Classes:
An Abstract Data Type Facility for the C Language

Bjarne Stroustrup

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

’ Language constructs for definition and use of abstract data types ease the
design and maintenance of large programs. This paper describes the C class con-
cept, an extension to the C language providing such constructs. A class is defined
using standard C data types and functions, and it can itself be used as a building
block for new classes. A class provides a way of restricting access to a data struc-
ture to a specific set of functions associated with it, without incurring significant
overheads at compile time or at run time.

) The C class concept is introduced by small examples of its use, and familiarity
wx;h the C language [2] is assumed. Appendix A is a complete small C program
using classes.

Classes have been in use for more than a year on a dozen PDP11 and VAX
UNIXt systems [1], and they are currently used for a diverse set of projects on
more than 30 systems. Classes are currently implemented by an intermediate pass
qt the cc compiler, called the class pre-processor, which is invoked when the direc-
tive #class is found in a C source file. The class pre-processor is easily ported to a

system with a version of the portable C compiler, A Motorola68000 version is in
use.

August 14, 1981

t UNIX is a Trademark of Bel Laboratories.

sejepdn
10339040

Classes:
An Abstract Data Type Facility for the C Language

Bjarne Stroustrup

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

It is common practice to provide non-trivial data structures with a set of access functions.
This practice helps preserve the consistency of the data and also aids programmers in the task of
writing and modifying programs. Classes have been added to the C language to allow functions to
be explicitly associated with data, and to protect the data against “irvegular” access from other func-
tions.

A simple example is a stack.where only the functions push() and pop(} are presented to the
user. The exact representation of the stack, that is the type of data structure used and its initializa-
tion, is hidden from the user. The declaration of a szack might look like this*:

class stack

{

char s8[SIZE];

chayr ¥ ming

char * top;

char # max;

void new{void);
public:

void push{char);

char pop(void);
b

A class declaration can be seen as a struer declaration to which functions have been added. Like a
structure declaration, a class declaration allocates no storage; it merely describes a template for
objects of that class. Names in the public part, that is appearing after the keyword public, provide
the interface to users. The other class member names are private, that is, they can only be used by
the implementor of the class in the functions declared in the class declaration. The functions named
in the class declaration must themselves be declared for the declaration to become meaningful, for
example the two public functions:

* A function of type void does not return a value; a function declared with the arg list (void) cannot accept
an argument. The void keyword, the ability to define the types of argument expected by & function in extern de-
clarations, and the function declaration syntax used in this paper are recent extensions of the C language. The new
and delete operators which are used to manage the free (dynathic) store are currently implemented only by the class

pre-processor.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F947886.947893&domain=pdf&date_stamp=1982-01-01

void stack.push(char c)

if (max <= top) error("stack overflow");
*top++ = C3

}

char stack.pop()

{
if (top <= min) error("stack underflow");
return *(--top);

}

The class name stack is used as a prefix to the function names in these declarations to indicate
that the function is the one named in the class declaration and that it should be compiled in the
context of that class. For example, min in stack.pop() is the name of the member of class stack, and
not an undefined extern. This makes it possible to use the same name to denote different functions
in different classes and to have class functions with the same name as a extern function.

The function name new has a special meaning in a class declaration. If present, the new()
function is guaranteed to be ex¢cuted immediately after an object of the class has been created.
This can be used to provide initialization:

void stack.new()

{
top
max

min = &s{0};
&s{SIZE-1];

}
Given the declaration of class stack, objects of that class can be declared. For example,

class stack s1, s2;

creates two objects of class stack named sI and s2, respectively. The public functions of class stack
can now be used on these abjects of class stack

sl.push(’h’);
sl.push(’0’);
¢ = sil.pop();

The notation is the usual object.member notation from C structures. Pointers can be defined, initial-
ized, and used in the usual way:

class stack * p = &s2;
p->push(’s’);
c = s2.pop();
would be a way of assigning the character 's” to ¢. Because the member top is private the statement
¢ = *(p->top); /* attempt to read the top ¢/
would be illegal and cause a compile time error.

Instantistion of Class Objects

The example above presents the idea of a facility providing an abstract data type based on C
data types and functions. This idea must be developed into a proper language facility. In this task
the designer was guided, not only by the obvious desire for generality, but also by a wish 1o provide
a simple facility which causes only low overheads in compiler complexity and run time support.

Some of the facilities arising from this balancing effort can be presented through a further ela-
boration of the stack example. All stacks created using the definition above have the size SIZE.
This is not ideal, so let us try again:

class stack

{
void new({short);
wvoid delete(void);
char #* ming
char * top;
char # mAax;

public:
void push(char);
char pop(void);

L

This class stack declaration does not specify the amount of store to be allocated for the stack
itself. Instead it is specified that an argument of type shorr must be provided for stack.new(). Argu-
ments to a new() function are provided as part of the declaration of a class object. For example:

class stack s1(SIZE), s2(200);

The new() function then provides the interpretation of them. In this case:

void stack.new(int size)
{
top
max

min = new char{size];
min+size-1;

#oH

}

A vector of size characters is allocated on the free store. This, however, creates a new prob-
lem. Because we cannot (in general) assume that a garbage collector is available, we must clean up
after ourselves. That is, in this case we must deallocate the vector pointed 10 by min when an object
of class stack is deleted. This is done by defining a parameterless function called delere.

void stack.delete()
{

delete ming
}

If a function of this name is mentioned in the class declaration it is guaranteed to be the last func-
tion accessing an object of that class before it is deleted. A delere() function cannot be explicitly
called, and neither can a new() function®.

A delete() function is typically declared void, and the deallocation of the class object after
return from delete() is unconditional. If, however, delere() returns an in¢ value then an object
created using the new operator can avoid being deallocated by returning a non-zero value. Return 0
frees the store.

* The exception to this rule can be found in the section describing classes containing class objects.

Class objects can be declared in two ways. A normal C style declaration can be used to create
class objects with their scope determined in the same way as other C variables*. For example:

class stack s1(SIZE), s2(SIZE+100);

will allocate space for sl and s2 on the stack if placed in a function body. The vector denoted by
min will however always be allocated on the free store by stack.new().
Alternatively, class objects can be generated on the free store by the new operator. For exam-
ple:
class stack * p = new class stack(SIZE);

Here the new() function’s argument list is placed after the specification of the type of object to be
created in the same way as it was placed after the object name in the standard C style declaration.

The new operator first allocates space from the free store and then calls the appropriate new()
function, if any. Class objects generated using the new operator do not have a name, only an
address.

The only way of destroying an object generated by the new operator is to apply its inverse
operator delete to a pointer to that object. The delete operator first executes the appropriate
delete() function, if any, and then returns the space occupied by that object to the free store. For
example: delete p will free the store occupied by the stack generated above after having executed
stack.delete() for it.

Applying the delete operator to an object which has not been allocated using the new operator
is a nuil operation.

If a new function does not need arguments the argument list need not be present, or it can be
empty. For example, the deciarations: class foo x; and class foo x(); are both valid, and their mean-
ings ‘dentical.

When writing a class declaration it is possible to specify an argument list to be used by the
new() function in case no argument list is provided in a class object declaration. An initializer is
simply provided for each (formal) parameter in the specification of new(). For example:

class stack
{
void new(int = SIZE);

e

specifies that a declaration
class stack x;
is equivallent to the declaration
class stack x(SIZE);
This provides a convenient shorthang for use in classes where objects are typically given a “stan-

dard” value at creation, and only “more sophisticated” use of the class demands the use of argu-
ments.

* However, for implementation reasons it will on many systems not be possible to provide extern of static objects of
classes with new() or delete() functions.

Organization of Multi-source-file Programs

Typically a C program consists of many source files. Information needed in more than one
source file is placed in a “header file” which is then “included” in all source files needing the infor-
mation.

The class concept is designed so that any class declaration can be placed in a header file and
included in all source files using that class. In particular, where many source files are used for the
program there is still one single copy of the class declaration included both in files containing class
member function declarations and in files just using objects of the class. If all argument types for
class member functions are specified in the class declaration then the type information used by the
“users” of the abstraction represented by the class is identical to the information used by the
“implementors” of that abstraction. It is also guaranteed that there will be at most one declaration
of a class member function in a program so that all users get the same implementation of the
abstraction. The program in Appendix A is organized this way.

The make program [1] can be used to ensure that a source file using a class is recompiled if
and only if the declaration of the class is changed, but not just because a function of that class is
changed. . .

Pointers to Functions

A class function is shared by all objects of its class and remains unchanged throughout the exe-
cution of the program. If greater flexibility is desired a pointer to a function can be used instead.
For example, imagine a table implemented so that initially its members are stored in a fixed size
table, but later, if that initial allocation is exceeded a linked list representation is needed. This
could be achieved by providing two access functions, and accessing the table through a pointer
denoting the appropriate one:

typedef int (*PF)(int);

class table
{

int vector_put(int);
« int linked_put(int);
public:
PF put;
}s

The pointer to function put can be used exactly as a member function would have been, that
is p->put(10). This allows the programmer to keep the interface the same independently of whether
a function or a pointer to & function is used for the implementation of a class member function.

I
N
I

|

Class Objects as Class Members
A class object can be declared as a member of a class like this:

class x {
class y a;

}s
and its new() function, if any, will be executed as the first part of the class’s own new() function, if
any. If a class containing class object members does not have a new() function then only the
member object’s new() functions, if any, will be executed. Class members’ delete() functions, if any,
are called as the last part of the class’s own delete() function, if any.

If a class object member needs arguments for its new() function then these must be provided

by the new() function of the class of which it is a member. This is done by a call to the member
object’s new() function. For example:

class x { void new(int); };
class y {
void new(int);

class x a;
o

void y.new(int arg) {
a.new(arg+10);
}

Vecters o class objects

A wector of class objects can be declared and referred to in the same way as vectors of other C
types. Far example:

class x vec[LIMIT];

vec[i}l.data = 10;
vec[i+10}].fct(2);

However, if class x here has a new() function then the initialization must be performed. This is done
by calling x.new() for each element of the vecior, as if the statement
for (i=0; 1<LIMIT; i++) vec[i].new();
had been written using a name i which was otherwise undefined in the scope.
Where such a new() function needs an argument list it can be provided like this:
class y v2{10](10);

Every member of v2 is initialized using the value zero. If different value are needed for the dif-
ferent vector elements side effects on the expressions in the argument list can be used:

int i, §;

i = 0;

class z v3{1000](i++);

i=j=0;

struct { int al, a2; } list{] = { {1,2}, (3,7}, {0,989}, {1,7} };

class z'v3[{10](list{i++]}.a81, list{j++].a2);

When using such side effects it should be remembered that the order of evaluation of C function
arguments is undefined.

Class Object Assignment

The assignment a=b is legal if a and b are objects of the same class. The semantics of this
assignment are that of a C struct assignment, that is, after the assignment the value of a is a copy of
the value of b, and b's value is unchanged. If a delete() function exists for a then it will be exe-
cuted before the information from b is copied.

A more interesting use of class object assignment would be:

extern class x f(class x);

class x a, b;

a = f(b);

Unfortunately, this standard struct-like assignment is not always ideal. Typically a class object
is only the root of a tree of information and a simple copy of that root without any notice taken of
the branches is undesirable. Similarly, simply overwriting a class object can create chaos.

Changing the meaning of assignment for objects of a class provides a way of handling these

problems. This is done by declaring a class member function called ‘‘operator =''. For example:
class x {
int a;

class y * p;
void operator = (class x *);

b
void x.operator = (class x * from) LL
{ ul
= from->&; !
delete p;
p = from->p;
from->p = 0
}
This defines a destructive read for objects of class x, as opposed to the copy operation implied by
the standard semantics. The function “operator ='' which performs the overloading cannot be

called directly, but to simplify the explanation below assume that its name is x_assign.

When an assignment a=b of objects of class x is seen the compiler generates a call
a.x_assign(&b). The value of the original expression a=b is the (new) value of a as expected, so
that, for example c=a=b is meaningful.

Where assignment is overloaded in this way the interpretation of the example a=f{b} becomes
more subtle. First b is passed by value, that is assigned to a local variable of f{). Assuming that the
name of the formal parameter was arg_b then arg_b.x_assign(&b) is executed.

When a class member function is executed, in this case x_assign(), all class objects on which it
operates must have been initialized by their new() functions, if any. For the a=f{b} example this
implies that if class x had a new() function, then that function must be executed for the object called
arg_b above. If x.new() does not take any arguments this is trivialfy achieved. If it does they can
be provided by declaring a default argument list for x.new().

The ““this”> Pointer

One pointer is always implicitly defined in a class function. It is the poi]

e A itly | . pointer this, that denotes
the associated class object. That is, in a class function this->name is equivalent to name for all
names of members. of that class. The this pointer is particularly useful for linked list manipulation
For example: ‘

class link

s link objects can form a doubly linked list.
p->put(q) adds link q to the left of link p.

q = p->get() removes the link to the right of p.

*/
(~
void new(void);
class link * left;
class link # right;
public:
void put(class link #);
class link * get(void);
}s
void link.new()
{
left = right = this;
}

desiares a type of doubly linked list where an element is always initialized i :
circolr lists, ys initialized in a way appropriate for

“The implied declaration for rhis in each function in a class X is:
class X * this = & this_object_of_class_X;

To ensure that rhis always has its defined meaning it is illegal to assign a value to it.
The function link.put() could be declared like this:

void link.put(class link * p)

{
p->left = left;
X p->right = this;
left->right = p;
left = p;
}

- This uti{izes. the featu{e that a clags function can access the private members of every object of
its class to which it has a pointer, not just the members of the object from which it was called.

Inline Substitution of Class Member Functions

It is not possible to use the standard C pre-processor #define to provide macro expansion of
class functions. Instead, if it is decided that the usual overhead of C function call and retum should
be avoided for a class function, then it can be specified that it should be inline substituted. This is
done by including the body of the function in the class declaration. For exampie:

class x {
int a;
public:
int reada() { return a; };
13
This allows the private variable a to be read (using reada(}), but not written to, from outside class
x. The use of reada() ori the left hand side of an assignment will produce an error, but when used in
a right hand context (as intended), for example, i=p->reada() it will generate the desired simple
read of p->a.

Another use of inline substitution is for new() functions for simple classes. These commonly
consist of just one or two assignments to private variables, are invoked from only a few places in a
program which, however, are frequently executed. For example, class link could have been declared
like this:

class link
{
public:
class link * left;
class link * right;
void new{) { left = right = this; };
}s
Note that to conform with C's rule that the name of a variable must be declared before its use new()
has to be placed textually after the declaration of left and right on which it operates.

An inline substituted function obeys the usual scope rules for functions, and its arguments are
typed in the same way as arguments 6 other functions. In these respects an inline function differs
from a C macro, which takes arbitrary strings as arguments and its body is interpreted in the (differ-
ing) contexts of the calls to it.

There will always be (imﬁlememation dependent) restrictions on what can be done with inline
substituted class functions®.

* The carrent set of restrictions is:
[1] Side effects on the arguments 10 an inline function are detected and treated as an error.

[2] An inline function which returns a value must contain exactly one remrn statement, which must be the last
statement in the function.

{3] An inline function which has been declared void cannot contain & retun statement.
{4} Local variables cannot be declared in an inline function.
[5] Global variables cannot be accessed from an inline functions.

If these restrictions seem too draconian 1o you remember that inline substitution is only an optimization facility which you
never need for expressing the logic of your program.

Derived Classes

An existing class, for example the class link defined above, often provides an abstraction that
nearly, but not completely, fulfills the demands of a particular application. For example, one could
wish to manipulate circular doubly linked lists where each element in a list held a word in the form
of a string of characters. Class link provides a known and well tested representation of doubly
linked circular lists, but provides no facility for associating information with a link. In other words,
one would like a “tailor made” version of the “standard” class for a particular application without
having to know the details of the implementation of that class, or have to design and test a com-
pletely new class.

This can be done in C by “deriving” a new class from an existing base class. For example:
class wordlink : link

{
public:
char word([SIZE];
void ‘clear(void);
link.put;
link.get;
}s
void wordlink.clear()
{
short i;
for (i=0; i<SIZE; i++) word[i] = 0;
}s

deciaves a class named wordlink that is a link, and in addition to the data and functions of a link has
o vector of characters called word, and a function called clear. The declarations:

class wordlink wl, * wp = new class wordlink;

will create two objects of class wordlink and initialize them correctly using link.new(), so that thy
following expressions are meaningful: :

wl.put(pp); /* chain the two wordlinks together »/
wl.word{i} = ‘c¢’;

pp->clear();

¢ = ((class wordlink #) wl.get())->word{i};

The colon after the class name, wordlink, in the class declaration indicates that it is to be a
derived class. The name of the base class, link, then follows.

Functions from a derived class have no special access to the private data of its base class. Like
other functions they can use the public names only. Public names from the base class are treated as
private in the derived class, unless they are expiicitly declared to be public there also. That is, state-
ments like

wl.put(pp);

are only legal because the qualified name link.pu; was mentioned in the public part of the declara-
tion of class wordlink. To make a public name from a base class a legal public name for a derived
class, leaving its meaning unchanged, its fully qualified name should be quoted, but no type infor-
mation can be supplied.

It is often useful to have all public names from the base class be legal public names for a
derived class. This is achieved by preceding the name of the base class with the keyword public. For
example:

class wordiink : public link
{
public:
char word{SIZE};
void clear(void)
}s

When a derived class is declared then two new() functions can exist, one for the base and one
for the derived class, and each must be executed to ensure the proper initialization of an object of
the derived class. First the new() for the base class is executed, and then the new() from the derived
class. The delete() functions are executed in the reverse order; that is, derived class before base.

Arguments are supplied to the derived new() in the usual way, and base.new()'s argument list,
if any, is specified in the declaration of the derived class’s new() function. For example, using the
declaration of class stack from the previous section, we can write:

class mystack :
{

public stack
void new(short);
bs

void mystack.new(size) short size;
; {(Bize+10)
{

b
which specifies that objects of class mystack need a shorr as argument, that the argument will be
called size, and that it will pass the value of the expression size+ !0 to stack.new().

The expressions in the argument list for a base class need not be expressed exclusively in terms
of the derived class’s formal parameters. For example:

class base
{

void new(int, int, int);
}s

class derived : base

{
void new(int, int);

b

void derived.new(int a, int b)
(a,f(b),2)

{

I
This will ensure that base.new() is executed as the first statement in derived.new().

“Lﬁ“

void derived.new(int a, int b)

{
base.new(a,f(b),2);
{
the actual body of derived.new
}
}

So, as a result of the declaration
class derived x(1,2+3);

derived.new is called with the argument list (7,2+3), but before the first of its statements is exe-
cuted base.new is called with the argument list (1,f{5),2).

Any class can be used as a base class, in particular, a derived class can be used as a base.

The first obvious use of the derived class concept is to provide libraries of useful base classes
for general use. An example of such a library is the classes for linked list manipulation and co-
routine style programming that are described in Reference 3. For many programmers such libraries
will be the only use of derived classes, they need never write a class intended to be used as a base
class or worry about the finer details of the derived class concept. It is, however, only through the
vse of derived classes that the class concept can significantly affect the logic of programs written in
¢

In the class wordlink example above the use of link.gei() on objects of class wordlink was made
a:noyingly clumsy by the need for a cast. Furthermore, because link.put() takes a “plain link” as
acgument it is not trivial to ensure that a chair of wordlinks does not, through a programming error,
have a “‘plain link” on it.

The solution to this problem is to provide class wordlink with its own get() and put(), and by
specifying these to be inline substituted ensure that the type checking thus achieved will cause no
runtime overhead at all:

class wordlink : link
{
char word{SIZE];
public:
void clear(void);
class wordlink * get(void) { return (class wordlink *) link.get(}; };
void put(class wordlink * p) { link.put(p); };
b

Name Clashes in Derived Classes

Sometimes it is useful to provide a derived class with a member name identical to a name in

the base class. One reason for this would be to provide a different service with an identical inter-
face. For example:

class unsafe /* assume responsible user */

{
int data;
public:
int pub;
void update();
}i
class safe : unsafe /% validate request before
using ‘‘unsafe’’
»/
{
public:
int pub;
void update();
};

A program using safe can now be identical to one using unsafe once the declarations have been
taken care of. To access the clashing names from unsafe functions from safe must use fully quali-
fied member names. For example:

void safe.update()
{
unsafe.pub = 1;
unsafe.update();
}

Suc!x complete qualification are in fact legal for every class member name, but does not affect
the meaning of the program in the absence of name clashes.

Generic Functions

The use of derived classes introduces a form of generic functions that can be used without
violating typing requirements. If f{) is a function from class x then

p->1();

will be legal both if p is a pointer to class x, and if it is a pointer to a class derived from class x
where f{) has been made public.

In a similar way a funciion declared

f(class x * p)

will accept a pointer to a class derived from class x as argument, provided all public names from
class x have been made public in that derived class.

Another form of generic function can be obtained by declaring functions with the same name
in several classes derived from a common base class. For example:

class matrix

{ B
public:
short type;
13
class sparse : public matrix
{
public:
class matrix * multiply(class matrix *);
}s
class dense : public matrix
{
public:
class matrix * multiply(class matrix *);
}s

If now both multiply() functions are declared to accept a pointer to an object of class matrix, rather
than to a specific type of matrix. Then the expressions

p-smultiply(q);
q~»>multiply(p);

are legal if p and g are pointers t objects of the derived classes sparse and dense. The purpose of
the member fype of class matrix is # enable the two multiply() functions to determine the types of
their arguments so that they can operate accordingly. Casting must be used to convert the “plain”
class matrix pointer passed to a paintér of the appropriate derived class type. For example:

class matrix * sparse.multiply(class matrix * arg)

{
switch (type) {
case DENSE:
d = (class dense *) arg;
break;
case SPARSE:
s = (class sparse *) arg;
break;
}
1
Generic Classes

The class stack example in the introduction explicitly defined the stack to be a stack of charac-
ters. That is sometimes too specific. What if a stack of long integers was also needed? What if a
class stack was needed for a library so that the actual stack element type could not be known in
advance? In these cases the class srack declaration and its associated function declarations should be
written so that the element type can be provided as an argument when a stack is created in the same
way as the size was.

There is no direct language support for this, but the effect can be achieved through the facili-
ties of the standard C pre-processor. For example:

class ELEM_stack {
ELEM * min, * top, * max;
void new(int), delete(void);
public:
void push(ELEM);
ELEM pop(void);
}s

This declaration can then be placed in a header file and macro-expanded once for each type
ELEM for which it is used:

#define ELEM long
#include "stack.h"
#undef ELEM

typedef class x X
#define ELEM X
#include "stack.h"
#undef ELEM

class long_stack 18(1024);
class long_stack 182(512);
class X_stack xs(512);

This is certainly not perfect, but it is simple, and it is quite easy to ensure that the necessary
copying of the class member function declarations take place exactly once for each type ELEM.

This style of writing lends itself well to the representation of simple aggregates of simple
objects, for example stacks, sets, queues, or vectors of characters., integers, or pointers.

For abstractions where the objects are more substantial, like symbol tables or geometrical fig-
ures, or where the duplication of the class member functions becomes a significant overhead an
alternative solution using base classes becomes attractive. For example:

typedef class elem * ELEM;

class stack
{

public:
void push{(ELEM);
ELEM pop(void);
}3

Thereafter pointers to objects of any class derived from class elem can be put onto the stack.
This technique avoids the copying of code implicit in the first generic solution by using more data
space. Both techniques lend themselves to the production of library software.

Friends

Some concepts are best represented by a set of mutually dependent classes, rather than by a
single class or by a set of independent classes. For example, consider the problem involved in writing
the function multiply() of class sparse as described in the matrix example above. To perform the
desired matrix multiplication sparse.multiply() must be able to read not only the representation of its
“own’ object of class sparse, but also the representation of its argument. Because the argument
may be of class dense, sparse.multiply() must be able to access the private part both of objects of
class sparse and of class dense. Altemnatively, it must use public functions to read each element of a
dense matrix, or be able to make an accessible copy of an object of class dense, or use some other
inefficient and/or complicated mechanism to achieve its basically simple aim.

The basic problem is that functions which operate on two or more objects of different classes
are occasionally very useful, but do not fit the abstract data type model where all operations on an
object are functions of its class. The mechanism provided to enable such functions to be written
without unacceptable overheads or undetectable breaches of the protection rules is a declaration
which specifies that the private members of one class can be accessed by another. For example:

class dense : matrix

{
friend sparse;

/% rest of declaration */
¥s
specifies that functions of class sparse can access the private part of an object of class dense as well

as the public part. Functions of class dense cannot access private members of class sparse unless the
declaration of class sparse include an appropriate friend declaration.

As in real life friends should be chosen with care.

Postscript

The aim of the class design was to provide the C programmer with a set of tools allowing the
structure of a “medium sized C program®” to be expressed more clearly and directly than had been
posxble before. The practical integration of the class concept with the facilities of the C program-
ming environment was considered far more important than any abstract notion of programming
language perfection.

The programmer is not asked to sacrifice “efficiency” to an abstract notion of beauty enforced
through restrictions on the use of the language or through the provision of facilities which imply sig-
nificant compxle time or run time overheads. The aim has been to enhance C as a practical systems
programming language, not to provide a new programming environment with a higher level of
semantics. With the exception of the introduction of the new keywords class, public, etc. all older
C programs preserve their meaning.

The permissive nature of C has been preserved. For example, it is possible to have public data
members of a class and to use casts on class pointers, thus ignoring the ideal that all operations on
an object of an abstract data type ought to be restricted to a few well defined operations. This ideal
is, however, not shared by everybody, and therefore not enforced through the language design. If it
is yours you can adhere to it, and because the class pre-processor records dependencies between
classes you can easily verify if a program passes this criterion of cleanliness. A version of the class
pre-processor, called class, will write out the recorded dependencies. . Because a more general set of
dependencies is recorded the output of class can be used for a vanety of purposes. Another use
would be to determine whether any function of a given class accessed globai data, or whether any
function of a class took advantage of the ability to access not only the object for which it was called,
but alsc other objects of the same class.

Acknowledgements

Initially the basic technique for the development of the design of C classes was to repeatedly
present ideas, designs, and sample programs to whoever could be interested in the problems, and
then try to unify the ideas atising from this exercise into a coherent language design. I owe many
people thanks for helping me in this. Dennis Ritchie and Steve Johnson proved to be especially
good sources of ideas and useful problems. Sandy Fraser and Doug Mcllroy influenced the design
through many long debates over issues of applicability and style. During the last year or so the class
concept was continually refined based on experience gained from the use of early implementations.
1 owe Sudhir Aggarwal, Jonathan E. Shopiro, and many others thanks for their patience with these
sadly imperfect versions of the class pre-processor and their many suggestions for improvements.

References

[1] Unix Programmer’s Manual
Seventh Edition, January 1979
Bell Telephone Laboratories
2] Kemighan, B.W. and Ritchie, D.M.
The C Programming Language
Prentice-Hall 1978
[3] Stroustrup, Bjarne
A Set of C Classes for Co-Routine Style Programming
Computer Science Technical Report CSTR-90
Bell Telephone Laboratories, December 1980

* 1 think of a medium sized p: a8 o g of thousands of lines of code. I it is better measured in tens of
thousands of lines of C it is oons:dcred large - and will most likely suffer from problems of human understanding
from which mere programming langusge structuring facilities can provide little relief,

OS..

Appendix A: A Complete Program

The following program is a small test program for the use of derived classes. Tt consists of
three files:

[1] queue.h provides the declarations for two classes, link and queue,
[2] queue.c provides the functions for these classes, and
[3] myqueue.c gives the program using these classes and containing the main() function.

JHRRARER Rk RR kbR file qUELS.h KEERIERERER R AR R ISR SRR R R RR R AR IR

class link
{
public:
class link * suc;
}s
class queue
{
Ve
a one way circular linked list,
each link points to its successor,
the tail element points to the head element
*/
class link * tail;
int n
void new() { tail = 0; n = 0; };
void delete() { if (n) error("non-empty queue deleted"); };
public:
class link * get(void);
void put(class link *);
1

extern void error(chare);

JEEHAERERARSRERER YR REE file QUELE.C #FEFRERRERREISSHENRBARR RN ERUS RSB B/
#include "queue.h"

class link * queue.get()
{
class lipk * p;

if (n--3 {
p = tail->suc;
tail->suc = p->suc;

return p;
}
else {

n = 0;

return 0;
}

void queue.put(class link * p)

{
if (n++) {
p->suc = tail->suc;
tail->suc = p;
}
else
p->suc = p;
tail = p;
}
void error(char* s)
{
printf("ss#s+ error: %s\n",s);
}

/ERBEBRREEBIRUHESRS53% Flle MYQUEUE.C FEESFRBAREREEBSBBRDRRER B KB E XS B RT$S)

#include <stdio.h>
#include "queue.h"

class info : public link

{ i
int type; =)
void new() { printf("new info "); }; TJ
void delete() { printf("delete info "); };

}s

main()

/¥
Put 10 objects of class info onto queue ‘‘q’’,
then take them off again.

Repeat this 10 times.

*/

{
class queue q;
class queue * qq = &q;
class info * pi;
int i,j;
for (i=0; i<10; i++) {

for (j=0; j<i; j++) g.put(new class info);
for (j=0; j<i; j++) delete (class info *) q.get();
}
}

