Personal tools
You are here: Home Projects SETL SETL2 Source code AEtnaNova_main.stl
Document Actions

AEtnaNova_main.stl

by Paul McJones last modified 2021-02-26 20:18
-- collection of top-level input routines for logic scenario files. starts at verifier_invoker
package prynter;						-- auxiliary routines for capturing and transforming 'print' statements

	var verif_start_time;				-- start time for verification
	var step_start_time;				-- start time for verification of single proof step
	var step_time_list,step_kind_list;		-- list of times and kinds for verification of steps in proof
	var best_time_so_far;				-- optimized time, if automated context optimization is used
	
	var retained_line := OM;			-- start line of report; retained until disposition known
	var step_kind;						-- one-character step-kind indicator for reporting

	var statement_being_tested;			-- to report verification errors
	var number_of_statement;			-- to report verification errors
	var number_of_statement_theorem;	-- to report verification errors
	var name_of_statement_theorem;		-- to report verification errors
	var prior_num := 0;					-- to track success omissions and modify green intensity

	var retain_thm_name := "";			-- retained for error printing
	var retain_thm_num := "";			-- retained for error printing
	var retain_line_num := 0;			-- retained for error printing
	var ncharacters_so_far := 0;		-- num characters written to secondary file during
	var was_open_div := OM;				-- flag: is there a prior error division?
	var divlist := [];					-- list of all error divisions
	var err_ohandle;					-- handle for detailed error output during second output phase.
	var was_syntax_error := false;		-- flag: was there a syntax error?
	var cycles_inferencing := 0;		-- cycles spent in base-level inferencing
	var dump_theorems_handle;			-- handle for writing theorems to theorem_summary file
	var dump_defs_handle;				-- handle for writing definitions to definition_summary file
	var dump_theories_handle;			-- handle for writing theories to theory_summary file 
	var dump_theorems_handle2;			-- handle for writing theorems to theorem_summary2 file
	var dump_defs_handle2;				-- handle for writing definitions to definition_summary2 file
	var dump_theories_handle2;			-- handle for writing theories to theory_summary2 file
	var dump_theorems_flag;				-- flag: should theorems be written to theorem_summary file?
	var theorem_count := 0;				-- count of theorems during dump
	var first_button_call := OM;		-- call of first button in formatted error table
	
	var ntheorem_w_proofs := 0;			-- count of theorems with proofs plus those defined by top-level 'APPLY' statements
	var tpa_to_just_tp_num := [];		-- vector, mapping of ntheorem_plus_top_apply number into ntheorem_w_proofs number
	var extra_message;					-- supplementary part of error message
	
	procedure printy(tup);				-- prints a tuple by converting/concatenating to string and then printing the result
	procedure set_output_phase(n);		-- set the output phase, controlling the target file to which output phase will be written
	procedure unicode_unpahrse(tree);		-- ******** unparse in one of two modes ********

end prynter;

package body prynter;		-- auxiliary routines for capturing and transforming 'print' statements
	use logic_parser_globals,sort_pak,string_utility_pak,logic_syntax_analysis_pak;		-- to get user_prefix

	var ohandle;					-- handle for sucess output during second output phase.
	var ferr_ohandle;				-- handle for formatted error output during second output phase.
	var prynter_phase := 1;			-- during printer phase 1 we write to standard output; subsequently to user_prefix + "Outfile_" + n  

	procedure set_output_phase(n);		-- set the output phase, controlling the target file to which output phase will be written
					-- this allows the prynter_phase to be set back to 1, but not back to any other value

		if prynter_phase = n then return; end if;		-- since the phase is not actually changing

		if prynter_phase > 1 then 
			if prynter_phase /= 2 then printa(ohandle,"<P>*** Completed output phase ",prynter_phase,"<P>"); end if;
			close(ohandle); close(ferr_ohandle); 
		else
			print("<P>*** Completed output phase ",prynter_phase,"<P>");
		end if;

		if n > 1 then 
			ohandle := open(user_prefix + "Outfile_" + n,"TEXT-OUT"); 
			err_ohandle := open(user_prefix + "Err","TEXT-OUT"); 
			ferr_ohandle := open(user_prefix + "Ferr","TEXT-OUT"); 
		end if;

		prynter_phase := n;

	end set_output_phase;
	
				-- This organizes printing and output into two 'phases'. During the first phase, printing of proofs is direct;
				-- during the second phase, messages received are separated into a report stream and a error stream, and formatted
				-- into html tables.

	procedure printy(tup);		-- prints a tuple by converting/concatenating to string and then printing the result

				-- During phase 2 this sorts the printed output into 'success' and 'error' streams, 
				-- formatting them both and directing them to different files.
				-- 'error' stream formatting works as follows: Lines starting with '++++++++' are suppressed,
				-- but the theorem name and line number are extracted from them and retained.
				-- Then, when a line containing '****** Error verifying step:' is encountered, 
				-- we extract the step number, and (from the next two lines) the offending statement and the
				-- 'remark' describing the offense. Subsequent material from the same error record is
				-- written to a secondary error file, and we keep track of the starting and ending characters 
				-- of the section of this file that corresponds to each verification error.
				-- The fields describing the error line itself are assembled into an HTML table row string of the form

--print(tup); return;
		-- <TR><TD BGCOLOR = "#ff8888" rowspan = 2><Input type ="radio" name ="pick" onclick ="butt_click('usr',1,100);">
		-- </TD><TD align = center rowspan = 2>182</TD><TD rowspan = 2>Theorem 116</TD>
		-- <TD align = center rowspan = 2>14</TD><TD align = center rowspan = 2>F</TD>
		-- <TD BGCOLOR = "#ffdddd">(m,n - m) --> T189 ==> #(m + (n - m)) = m •PLUS (n - m)</TD>
		-- </TR><TR><TD>Explanatory remark</TD></TR>				
				-- The .php server code associated with error display prefixes these generated lines with header lines having the form
		
		-- <HTML><HEAD><Title>EtnaNova Preliminary - Verification Failures Report</Title></HEAD> <BODY><B> 
		-- <FORM name = "etna_nova_errform" method = "POST" enctype = "multipart/form-data">
		-- <table border="1" cellpadding = 5>
		-- <TR><TD></TD><TD BGCOLOR = '#ff8888'>Thm. No.</TD><TD BGCOLOR = '#ff8888'>Thm. Name</TD>
		-- <TD BGCOLOR = '#ff8888'>Line No.</TD><TD BGCOLOR = '#ff8888'>F/A</TD><TD align = center BGCOLOR = '#ff8888'>Line</TD></TR>"

				-- 	and then echoes all the preceding lines to the client, followed by a concluding block of the form			

		-- </Table></FORM></B>
		-- <script>
		-- function butt_click(usr,st,nd) {
		-- 		dfee = document.forms['etna_nova_errform']; 
		-- 		dfee.action = 'etna_nova_err_dets.php?usr,st,nd';
		-- 		dfee.submit();}
		-- </script>
		-- </BODY></HTML>
				
		if prynter_phase = 1 then 		-- during the first phase output is simply directed to the standard ouput stream

			print("<BR>" +/[str(x): x in tup]); -- the components of the tuple are simply converted into strings and concatenated

		else		-- during phase one, output is directed to a designated file
					-- lines relating to success and to timing are written to the second phase output file;
					-- lines related to error are written to the error file. These files are written
					-- in tabular formats for display

			if (t1 := tup(1)) /= OM and #str(t1) > 39 and t1(1..40) = "\n+++++++++++ starting verifications for:" then		-- we have a 'holdback' line

				-- A line in this format is written at the start of verification for each theorem that gives the
				-- theorem name and number separated by a '#' sign.
				
				tup(1) := "\n\n++++++++" + t1(41..);			-- abbreviate the prefix
				t1 := ("" +/tup)(3..);							-- bypass the eol's
				
				span(t1,"+ "); name_and_no := break(t1," "); 			-- get theorem name and number
				[retain_thm_name,retain_thm_num] := breakup(name_and_no,"#");
			
				if retained_line /= OM then printa(ohandle,retained_line); end if;		-- print any previous 'starting' line
				
				retained_line := "" +/[str(x): x in tup];			-- retain the new 'starting' line

			else		-- otherwise simply print the line,  along with any previously retained line
						-- but if this line starts with " OKtime: " or " NOKtime: " then process the line into HTML table form
				if (t1 := tup(1)) = " OKtime: " or t1 = " NOKtime: " then

					-- Lines of this form are issued at the start of each proof, giving the number of steps of the proof,
					-- the proof time, detailed timing and step kind information for all proof steps, and indicating
					-- success or failure of each step. 

					printa(ohandle,convert_to_row(if retained_line = OM then "" else retained_line end if +/[str(x): x in tup]));
					retained_line := OM;			-- and in this case the retained line has been used up

				else			-- we have an error header or detail line
				
							-- error lines are written to the 'Err_' file, but the formatted error lines are written to the 
							-- 'Ferr_' file. We keep track of the 'Err_' file starting position of each item, 
							-- so that this portion can be displayed when a radio button in the error summary table is selected.
					
					nt1 := #t1;			-- get length of t1
			
						-- step verification failure always issues a message starting with "\n****** Error verifying step:"
						-- and continuing with a step number and indication of whether the step failed or was abandoned
						
					if nt1 >= 29 and t1(1..29) = "\n****** Error verifying step:" then		-- we have a new error indication
						
						[l1,offending_statement,comment] := breakup(("" +/+/[str(x): x in tup])(30..),"\n");	
								-- bypass the '\n****** Error verifying step:'
						span(l1,"\t "); stepno := break(l1,"\t ");		-- get the step number
								-- now determine if we have an 'Abandoned' case
						fa_flag := if #comment >= 10 and comment(1..10) = "\nAbandoned" then "A" else "F" end if;

							-- The information provided by the error tuple is used to set up the lines of the error table giving the
							-- theorem number, name, the line number of the error, failure/abandoned indication and summary comment
							-- failure.
							-- Each such line is prefixed by a radio button, which, if clicked, brings up more detailed
							-- information concerning the error.
							
							-- Compose the formatted lines for the error summary;
							-- enclose the information items in HTML tags

						rbutton_part := "<TR><TD BGCOLOR = '#ff8888' rowspan = 2><Input type ='radio' name ='pick' " + 
							if first_button_call /= OM then "" else " checked " end if +    -- set first error button on
							 "onclick ='butt_click(\"S" +  stepno + "."  + retain_thm_name + "\");'>";
										-- keep first button-click command
						first_button_call ?:= "butt_click(\"S" +  stepno + "."  + retain_thm_name + "\");";
						
						thmno_part := "</TD><TD align = center rowspan = 2>" + retain_thm_num?"?" + "</TD>";
						thmname_part := "<TD rowspan = 2>" + retain_thm_name?"?" + "</TD>";
						stepno_part := "<TD align = center rowspan = 2>" + stepno?"?" + "</TD>";
						fa_part := "<TD align = center rowspan = 2>" + fa_flag + "</TD>";
--						badline_part := "<TD BGCOLOR = '#ffdddd'>" + unicode_unpahrse(parse_expr(offending_statement + ";")) + "</TD>";
						badline_part := "<TD BGCOLOR = '#ffdddd'>" + offending_statement + "</TD>";
						comment_part := "</TR><TR><TD>" + comment + "</TD></TR>";
	
								-- assemble the pieces
						formatted_line := rbutton_part + thmno_part + thmname_part + stepno_part + fa_part + badline_part + comment_part;
						
						printa(ferr_ohandle,formatted_line);

								-- end the prior testarea and division in the 'Err' file. Note that EtnaNova_main.php must set up
								-- an inital dummy textarea and div, and must close the last textarea and div set up by this SETL code
									
						if was_open_div /= OM then 
							printa(err_ohandle,"</div>");		-- and set up a new division with Id = Sstepno.thmname
										-- this is exactly the id referenced in the corresponding error radiobutton set up above
						end if;
						
						divlist with:= (dvid := "S" +  stepno + "."  + retain_thm_name);		-- retain name of new division
						printa(err_ohandle,"<div id ='" + dvid + "'>");						-- set up new division
						was_open_div := true;													-- which will need to be closed
						--printa(err_ohandle,"<textarea cols = 100 rows = 300>");				-- and up a new textarea in this division (dont use textarea)
	
						end if;
							-- write all the error information, including the header lines just processed, to the 'Err' file
						printa(err_ohandle,"<BR>",stg_written := if retained_line = OM then "" else retained_line end if + " " +/[str(x): x in tup]);

				end if;

			end if;

		end if;
		
	end printy;

	procedure convert_to_row(stg);			-- convert normal succcess output string to HTML row format
		span(stg," \t\n");		-- format of stg is like ++++++++ T0#1 -- 1554 OKtime: 9[0, 1, 5, 1]["P", "S", "D"]; the tuple being step times (possibly NOKtime:)
		pref := match(stg,"++++++++");						-- check start of string

		if pref = "" then return ""; end if;			-- process only rows in expected format, suppress others 
		span(stg," \t");								-- advance to the 'T' field
		thmsig := break(stg," \t");						-- break out the 'T' field
		span(stg," \t-0123456789");						-- span past irrelevant time field
		ok_nok := match(stg,"OKtime: ");							-- advance to the times field
		ok_nok := match(stg,"NOKtime: ");							-- advance to the times field
		stepkinds := rbreak(stg,"["); stepkinds := unstr("[" + stepkinds); rmatch(stg,"[");
--print("<P>stepkinds: ",stepkinds); 
		thmtime := break(stg,"[");						-- break out the total theorem time
		
							-- for theorems verified very rapidly, suppress time portion of report
 		[name,num] := breakup(thmsig,"#");				-- get the theorem name and number
		
		if unstr(thmtime)?0 < 20 then 		-- theorem proof is short; don't give step details
			res := "<TR><TD BGCOLOR = " + if ok_nok = "NOKtime: " then "'#ff8888'" elseif prior_num = unstr(num?"-1000") - 1 then "'#88ff88'" else "'#00dd00'" end if + 
								" align = 'center'>" + join([num,name],"</TD><TD  align = 'center'>") + "</TD></TR>";
			prior_num := unstr(num?"1000");

			return res;				-- done with this case
 		end if;
								-- otherwise the theorem time is long enough for the step times to be reported in some detail
  		nsteps := #(time_list := unstr(stg)?"[]"); 					-- convert the step time list to a numericl tuple
  		time_list := merge_sort([[-t,j]: t = time_list(j) | t > 6]);		-- sort it in descending time order
 		time_list := time_list(1..#time_list min 10);				-- take at most 10 of the longest step times
 		time_list := merge_sort([[j,-t]: [t,j] in time_list]);		-- rearrange into original order
 		time_list := ["<TD  align = 'center'" + if t > 500 then " BGCOLOR = '#aaaaff' " elseif t > 100 then " BGCOLOR = '#ffaaaa' " elseif t > 50 then " BGCOLOR = '#dddddd' " else "" end if + ">" + stepkinds(j) + str(j) + ": " + t: [j,t] in time_list];		-- convert to string
 
 		res := "<TR><TD BGCOLOR = " + if ok_nok = "NOKtime: " then "'#ff8888'" elseif prior_num = unstr(num) - 1 then "'#88ff88'" else "'#00dd00'" end if + " align = 'center'>" + 
 				join(([num,"<TD  align = 'center'>" + name] with ("<TD  align = 'center'>#" + str(nsteps) + ": t" + thmtime)) + time_list,"</TD>") + "</TD></TR>"; 
		prior_num := unstr(num);

		return res;

	end convert_to_row;

	procedure unicode_unpahrse(tree);		-- ******** unparse in one of two modes ********

		return if running_on_server then unicode_unparse(tree) else unparse(tree) end if;

	end unicode_unpahrse;

	
end prynter;

--			*******************************************
--			******* Overall Survey of this file *******
--			*******************************************
--
--The collection of routines which follow falls into the following principal sections and subsections:
--	  
--(A) Top level parsing procedures 
--	
--	[A.1] Main program for scenario decomposition into numbered sections
--	       division of proof lines into 'hint' and 'body' portions 
--	[A.2] Collection and numbering of theory sections 
--	[A.3] Enforcement of special Ref syntactic/semantic rules  
--	[A.4] Interfaces to the native SETL parser 
--					 
--(B) Master control of in-proof inferencing and related utilities 
--					 
--	[B.0] Initial read-in of digested proof and theory related files 
--	[B.1] Master entry for checking inferences in a single proof 
--	[B.2] conjunction building for inference checking 
--	[B.3] Definition checking
--		Checking of recursive definitions

--	[B.4] Removal of internal labels from proof lines 
--	[B.5] Interface to the MLSS routines 
--	[B.6] Routine to disable/enable checking of particular classes of inference
--					 
--(C) Library of routines which handle details of individual inference classes 
--
--	[C.1] Discharge inference checking 
--	[C.2] Statement citation inference checking 
--	[C.3] Theorem citation inference checking 
--	[C.4] Equality inference checking 
--	[C.5] Algebra inference checking 
--	[C.6] Simplification inference checking 
--	[C.7] Use_def inference checking 
--	[C.8] Suppose_not inference checking 
--	[C.9] Monotonicity inference checking 
--	[C.10] Loc_def inference checking 
--	[C.11] Assumption inference checking for theorems within theories 

--	[C.12] THEORY application inference checking (outside proofs) 
--		 APPLY conclusion checking (for THEORY application outside proofs) 

--	[C.12a] THEORY application inference checking (within proofs) 
--		Syntax checking for THEORY application 
--		Analysis of APPLY hints within proofs 
--			Finding the variables to be substituted for APPLY _thryvars 

--	[C.13] Skolemization inference checking (outside proofs) 
--	[C.13a] Skolemization inference checking (within proofs) 
--				      
--(D) Interfacing to external provers 
--				      
--	[D.1] Interface to 'Otter' prover 
--				      
--(E) Miscellaneous utilities
--	      
--	[E.1] Formula feature search utilities 
--	[E.2] Utilities for statistical analysis of the proof scenarios 
--	[E.3] Code for automated optimization of proof scenarios 
--	      
--(F) Test Program collection for Ref top level routines 

--		******************************************************************
--		*************** Detailed Index, showing procedures ***************  
--		******************************************************************

--(A) ***** Top level parsing procedures *****
--	
--		procedure parse_scenario(file_name,first_proof,last_proof);		-- parse a specified Defs_w_proofs file		
--		procedure parse_Defs_w_proofs(lines_tup);			-- parse the Defs_w_proofs file		

--	[A.1] Main program for scenario decomposition into numbered sections

--		procedure parse_file(lines_tup);	-- extracts the sequence of definitions, theorems, proofs, and theories from a scenario file
--	       division of proof lines into 'hint' and 'body' portions 

--		procedure digest_proof_lines(proof_sect_num); 		-- finds location of ==> in string, if any; position of last character is returned
--		procedure theorem_text(sect_no);			-- gets stripped text of theorem
--		procedure definition_text(sect_no);								-- gets stripped text of definition

--	[A.2] Collection and numbering of theory sections 

--		procedure take_section(now_in,current_section);			-- collects section

--	[A.3] Enforcement of special Ref syntactic/semantic rules  

--		procedure tree_check(node); 	-- checks that there are no compound functions, enomerated tuples of length > 2, and unrestricted iterators in setformers
--		procedure get_theorem_name(stg); 			-- extracts theorem name from string
--		procedure check_theorem_map(); 			-- check the syntax of all the theorems written to the theorem_map_file

--	[A.4] Interfaces to the native SETL parser 

--		procedure parze_expr(stg); 			-- preliminary printing/diagnosing parse
--		procedure pahrse_expr(stg); 		-- parse with check of syntactic restrictions
--		procedure collect_fun_and_pred_arity(node,dno); 		-- collect the arity of functions and predicates (main entry)
--		procedure collect_fun_and_pred_arity_in(node,bound_vars); 		-- collect the arity of functions and predicates (workhorse)

--(B) ***** Master control of in-proof inferencing and related utilities *****
--					 
--	[B.0] Initial read-in of digested proof and theory related files 
--					 
--		procedure read_proof_data();	-- ensure that the list of digested_proofs,   
--		procedure init_proofs_and_theories();

--		procedure check_proofs(list_of_proofs); 		-- check ELEM and discharge inferences in given range

--	[B.1] Master entry for checking inferences in a single proof 

--		procedure check_a_proof(proofno);		-- read a given proof and check all its inferences 

--	[B.2] conjunction building for inference checking 

-- 		procedure form_elem_conj(hint,statement_stack);			-- build conjunction to use in ELEM-type deductions
--		procedure build_conj(citation_restriction,statement_stack,final_stat);	-- context-stack to conjuction conversion for inferencing in general

--	[B.3] Definition checking

--		procedure check_definitions(start_point,end_point);		-- check the definition citation inferences in the indicated range

--	       Checking of recursive definitions 

--		procedure recursive_definition_OK(symbdef,arglist,right_part);		-- check a recursive definition for syntactic validity
--		procedure recursive_definition_OK_in(node,var_bindings); 		-- check a recursive definition for syntactic validity (inner workhorse)

--	[B.4] Removal of internal labels from proof lines 

--		procedure drop_labels(stg); 		-- finds location of Statnnn: in string, if any. These labels are dropped, and positions of first characters are returned

--	[B.5] Interface to the MLSS routines 

--		procedure test_conj(conj);				-- test a conjunct for satisfiability
--		procedure show_conj(); 
--		procedure conjoin_last_neg(stat_tup);		-- invert the last element of a collection of clauses and rewrite using 'ands' 
--		procedure conjoin_last_neg_nosemi(stat_tup);		
--		procedure conjoin_last(stat_tup);			-- rewrite a collection of clauses and using 'ands' 
--		procedure collect_conjuncts(tree);			-- extract all top-level terms from a conjunction
--		procedure collect_equalities(tree);			-- extract all top-level collect_equalities from a conjunction

--	[B.6] Routine to disable/enable checking of particular classes of inference

--		procedure disable_inferences(stg);			-- disables and re-enables the various kinds of inferences

--(C) ***** Library of routines which handle details of individual inference classes ***** 
--
--	[C.1] Discharge inference checking 

--		procedure check_discharge(statement_stack,prior_suppose_m1,stat_in_discharge,discharge_stat_no,hint);

--	[C.2] Statement citation inference checking 

--		procedure check_a_citation_inf(count,statement_cited,statement_stack,hbk,citation_restriction,piece);

--	[C.3] Theorem citation inference checking 

--		procedure check_a_tsubst_inf(count,theorem_id,statement_stack,hbk,piece,statno);		-- check a single tsubst inference

--	[C.4] Equality inference checking 

--		procedure check_an_equals_inf(conj,stat,statement_stack,hint,stat_no);		-- handle a single equality inference
--		procedure extract_equalities(conj);				-- extract and arrange all top-level equalities and equivalences from a conjunction

--	[C.5] Algebra inference checking 

--		procedure check_an_algebra_inf(conj,stat);		-- handle a single algebraic inference
--		procedure alg_node_bottoms(tree,plus_op);		-- return list of algebraic node base elements for given node
--		procedure alg_node_bottoms_in(tree,plus_op);		-- recursive workhorse

--	[C.6] Simplification inference checking 

--		procedure check_a_simplf_inf(statement_stack,stat,stat_no,hint,restr);	-- handle a single set-theoretic standardization inference

--	[C.7] Use_def inference checking 

--		procedure check_a_use_def(statement_stack,stat,theorem_id,hint,j);	-- check a single Use_def inference
--		procedure get_symbol_def(symb,thry);				-- get the definition of a symbol, in 'thry' or any of its ancestors

--	[C.8] Suppose_not inference checking 

--		procedure check_suppose_not(supnot_trip,pno,th_id);		-- check the suppose_not inferences in the indicated range

--	[C.9] Monotonicity inference checking
 
--		procedure check_a_monot_inf(count,statement_stack,hbk,theorem_id);	-- check a single Set_monot inference

--	[C.10] Loc_def inference checking 

--		procedure check_a_loc_def(statement_stack,theorem_id);		-- check a single Loc_def inference

--	[C.11] Assumption inference checking for theorems within theories 

--		procedure check_an_assump_inf(conj,stat,theorem_id);		-- handle a single 'Assumption' inference

--	[C.12] THEORY application inference checking (outside proofs) 

--		procedure check_an_apply_inf(next_thm_name,theory_name,apply_params,apply_outputs);	
--		procedure check_apply_syntax(text_of_apply);			-- special processing for global definitions by "APPLY"

--		 APPLY conclusion checking (for THEORY application outside proofs) 

--		procedure test_conclusion_follows(next_thm_name,desired_concl);		-- test desired conclusion of a top-level APPLY inference


--	[C.12a] THEORY application inference checking (within proofs) 

--		procedure check_an_apply_inf_inproof(thm_name,stat_stack,theory_name,apply_params,apply_outputs);	

--			Syntax checking for THEORY application 

--		procedure test_apply_syntax(theory_name,apply_params,apply_outputs);

--			Analysis of APPLY hints within proofs 

--		procedure decompose_apply_hint(hint);					-- decomposes the 'hint' portion of an APPLY statement

--			Finding the variables to be sustituted for APPLY _thryvars 

--		procedure get_apply_output_params(apply_outputs,hint);	-- decompose and validate apply_outputs, returning them as a tuple of pairs

--	[C.13] Skolemization inference checking (outside proofs) 

--		procedure check_a_skolem_inf(next_thm_name,theorem_to_derive,apply_params,apply_outputs);
--		procedure check_skolem_conclusion_tree(desired_conclusion,apply_params,apply_outputs);	
--		procedure build_Skolem_hypothesis(desired_conclusion,tree,split_apply_outputs);

--	[C.13a] Skolemization inference checking (within proofs) 

--		procedure check_a_Skolem_inf_inproof(stat_stack,theory_name,apply_params,apply_outputs);	
--		procedure conclusion_follows(theory_name,apply_outputs,apply_params_parsed,conclusion_wanted);
--		procedure build_required_hypothesis(hypotheses_list,apply_params_parsed);
--		procedure def_as_eq(symb,args_and_def);		-- rebuild a definition as an equality or equivalence
--		procedure tree_is_boolean(tree);		-- test a tree to see if its value is boolean

--(D) ***** Interfacing to external provers *****
--				      
--	[D.1] Interface to 'Otter' prover 
--				      
--		procedure check_an_external_theory(th,assumed_fcns,assumps_and_thms);		-- check declaration of an external THEORY
--		procedure otter_clean(line); 				-- removes otter comments and forumla_to_use lines
--		procedure check_an_otter_theory(th,assumed_fcns,assumps,thms);		-- check declaration of an otter THEORY
--		procedure suppress_thryvar(stg); 			-- suppresses all instances of '_THRYVAR' in string
--		procedure otter_to_ref(otter_item,otfile_name); 		-- converts an otter item to SETL syntax; returns unparsed tree or OM

--(E) ***** Miscellaneous utilities *****
	      
--	[E.1] Formula feature search utilities 

--		procedure find_free_vars_and_fcns(node); 					-- find the free variables and function symbols in a tree (main entry)
--		procedure find_free_vars_and_fcns_in(node,bound_vars); 		-- find the free variables in a tree (recursive workhorse)
--		procedure find_quantifier_bindings(node); 					-- find the variable bindings at the top of an iterator tree
--		procedure list_of_vars_defined(theory_in,kind_hint_stat_tup);		-- find the ordered list of variables defined in a proof
--		procedure trim_front(stg); 									-- removes leading whitespace
--		procedure front_label(stg); 								-- finds prefixed Statnnn: in string, if any and returns it
--		procedure loc_break(stg); 									-- finds location of ==> in string, if any; returns pos. of last character
--		procedure split_at_bare_commas(stg);						-- splits a string at commas not included in brackets
--		procedure trim(line); 										-- trim off whitespace
--		procedure paren_check(stg); 								-- preliminary parenthesis-check
--		procedure find_defined_symbols();							-- extracts the sequence of definitions, theorems, and theories from a scenario file 			
--		procedure strip_quants(tree,nquants);						-- strip a specified number of quantifiers from a formula 
--		procedure strip_quants_in(tree,nquants);					-- strip a specified number of quantifiers from a formula
--		procedure setup_vars(il,offs); 								-- 'offs' flags nature of variable returned (universal or existential)
--		procedure conjoin_iters(list_of_iters,quant_body);			-- conjoin list of iterators to formula body
--		procedure ordered_free_vars(node); 							-- find the free variables in a tree, in order of occurrence (main entry) 
--		procedure ordered_free_vars_in(node,bound_vars); 			-- find the free variables in a tree (recursive workhorse)
--		procedure remove_arguments(node,fcn_list);					-- remove arguments from list of functions
--		procedure remove_arguments_in(node,fcn_list,bound_vars);	-- remove arguments from list of functions (recursive workhorse)
--		procedure symbol_occurences(tree,symbol_list);
--		procedure symbol_occurences_in(node,symbol_list,bound_vars);
--		procedure free_vars_and_fcns(thm);							-- get all the free variables and functions of a theorem
--		procedure fully_quantified(theory_nm,thm);					-- construct the  fully quantified form of a theorem in a theory
--		procedure fully_quantified_external(theory_nm,thm);
--		procedure freevars_of_theorem(theory_nm,thm);				-- find the quantifiable free variables of a theorem, given theory

--		procedure not_all_alph(stg); 

--	[E.2] Utilities for statistical analysis of the proof scenarios 

--		procedure get_hints(proofno1,proofno2);						-- examine the hints which occur in a given range of proofs and report statistics
--		procedure view_theorem_citations(proofno1,proofno2);		-- count the number of theorem citations in a given range, and print them
--		procedure inspect_proofs(tup_of_numbers);					-- inspect a specified list of proofs, from digested_proof_file

--(F) ***** Test Program collection for Ref top level routines *****

--		procedure do_tests3();					-- do tests for this package
--		procedure test_check_a_skolem_inf;		-- test of check_a_skolem_inf function
--		procedure test_check_an_apply_inf;		-- test of check_an_apply_inf function
--
--			*******************************************
--			*************** Main Package **************
--			*******************************************

package verifier_top_level;		-- top level routines of logic verifier
	
	var statement_tuple_being_searched,known_criticals;		-- full tuple of statements being searched during automated context optimization
	var save_optimizing_now,optimizing_now := false;		-- flag indication optimization, suppresses error diagnosis 
	var extra_conj;											-- supplementray clause, to be added during search
	
	var show_details := false;
	var detail_limit := 300000;			-- cutoff for statement citation examination
	var error_count := 0;				-- accumulated error count for a single proof, to be reported
	var total_err_count := 0,total_fully_verified_proofs := 0;		-- total error and correct proof count for reporting
	var disable_elem := false, disable_tsubst := false, disable_algebra := false, disable_simplf := false;
	var disable_discharge := false,disable_citation := false,disable_monot := false,disable_apply := false;
	var disable_loc_def := false,disable_equal := false,disable_use_def := false,disable_assump := false;
					-- flags for disabling various kinds of inference during testing

							-- globals for the THEORY mechanism
	var parent_of_theory := {},last_theory_entered := "Set_theory",theors_defs_of_theory := {};
	var theory_of := {};						-- maps each definition and theorem into its theory
	var theory_of_section_no := {};				-- maps each section into its theory 
	var show_error_now := true;					-- flag for error print in test_conj 
	
	var theorem_list,theorem_name_to_number; 	-- list of theorem names in order, and inverse
	var defs_of_theory := {},defsymbs_of_theory := {},defconsts_of_theory := {};
	var def_in_theory := {};					-- maps theory name into set of symbols defined in theory
	var theorem_templates := OM;				-- for automatic analysis of theorem citations
	var topsym_to_tname := {};					-- maps top symbol of theorem conclusion conjunct to name of theorem
	var def_tuple;								-- the tupe of pairs written to definition_tup_file
	var use_proof_by_structure := false;		-- switch: should proof_by_structure be used in the current proof?

	const lowcase_form := {["#","ast_nelt"],["DOMAIN","ast_domain"],["RANGE","ast_range"],["POW","ast_pow"],["AST_ENUM_TUP","ast_enum_tup"],["[]","ast_enum_tup"]};
	
	var assumps_and_consts_of_theory := {		-- Set_theory is initial endowment
		["Set_theory",[["arb(x)","s_inf"],["(FORALL x in OM | ((x = 0) and (arb(x) = 0)) or ((arb(x) in x) & (arb(x) * x = 0)))",
				"s_inf /= 0 and (FORALL x in s_inf | {x} in s_inf)"],["arb(x)","s_inf"]]]};
	
--				**********************************************************************************************
--				**********         the MASTER SCENARIO PARSING ENTRY; does syntax checking          **********
--				********** This produces all the files used subsequently for verification checking: **********
--				**********    namely the suppose_not_file, digested_proof_file,theorem_map_file     ********** 
--				******** See comment at the start of 'parse_file' for details of scenario file syntax ********
--				**********************************************************************************************

	procedure verifier_invoker(uid);								-- master invocation routine	
--	procedure parse_scenario(file_name,first_proof,last_proof);		-- parse a specified Defs_w_proofs file		
--	procedure parse_Defs_w_proofs(lines_tup);				-- parse a raw scenario, producing all the files used subsequently

	procedure disable_inferences(stg);								-- disables and re-enables the various kinds of inferences
																	-- include a '*' in the list to disable by default

	procedure find_defined_symbols();								-- extracts the sequence of definitions, theorems, and theories from a scenario file 			
	procedure collect_fun_and_pred_arity(node,dno); 				-- collect the arity of functions and predicates (main entry)
	procedure test_conj(conj);										-- test a conjunct for satisfiability
	
	procedure check_proofs(list_of_proofs); 						-- check all inferences in given range
	procedure check_suppose_not(supnot_trip,pno,th_id);				-- check the indicated suppose_not inference (initial statements of proof)
	procedure check_definitions(start_point,end_point);				-- check the definitions in the indicated range
	procedure check_an_equals_inf(conj,stat,statement_stack,hint,stat_no);	-- handle a single equality inference

				-- *********** lower-level routines  ***********
	procedure strip_quants(tree,nquants);							-- strip a specified number of quantifiers from a formula

				-- *********** auxiliaries for having a glimpse at the digested_proof_file and related items  ***********
	procedure inspect_proofs(tup_of_numbers);		-- inspect a specified list of proofs, from digested_proof_file and the 
	procedure get_hints(proofno1,proofno2);							-- read the hints which occur in a given proof
	procedure view_theorem_citations(proofno1,proofno2);			-- count the number of theorem citations in a given range, and print them

				-- *********** procedures for APPLY inference checking  ***********
	procedure check_a_skolem_inf(next_thm_name,theorem_to_derive,apply_params,apply_outputs);
		-- checks a skolem inference
 	procedure check_an_apply_inf(next_thm_name,theory_name,apply_params,apply_outputs);	
		-- checks a non-skolem APPLY inference
	procedure ordered_free_vars(node); 		-- find the free variables in a tree, in order of occurrence (main entry) 

				-- *********** procedures for ALGEBRA inference checking  ***********
	procedure check_an_algebra_inf(conj,stat);		-- handle a single algebraic inference
	procedure alg_node_bottoms(tree,plus_op);		-- return list of algebraic node base elements for given node

				-- *********** procedures for external prover interface  ***********
	procedure otter_to_ref(otter_item,otfile_name); 		-- converts an otter item to SETL syntax


						-- ********** Miscellaneous utilities. **********

	procedure read_range(stg);			-- convert to list of proofs to be printed; force range indicator to legal form and return it
--	procedure first_last(stg);			-- reduce dotted ranges to first and last elements, and read

				-- 				*********** test procedures ***********
	procedure miscellaneous_tests;	-- repository for miscellaneous top-level logic verifier tests under development
 
end verifier_top_level;

package body verifier_top_level;		-- top level routines of logic verifier

				-- *********** auxiliaries for having a glimpse at the digested_proof_file and the  ***********
--	procedure inspect_proofs(tup_of_numbers);		-- inspect a specified list of proofs, from digested_proof_file

--					********** Decomposition of scenario lines into hints, labels, formula, etc. **********

--	procedure digest_proof_lines(proof_sect_num); 				-- finds location of ==> in string, if any; position of last character is returned
--	procedure drop_labels(stg); 		-- finds location of Statnnn: in string, if any. These labels are dropped, and positions of first characters are returned
--	procedure front_label(stg); 		-- finds prefixed Statnnn: in string, if any and returns it; otherwise returns an empty string
--	procedure loc_break(stg); 			-- finds location of ==> in string, if any; position of last character is returned
--	procedure theorem_text(sect_no);								-- gets stripped text of theorem
--	procedure definition_text(sect_no);								-- gets stripped text of definition
--	procedure take_section(now_in,current_section);					-- collects section
--	procedure split_at_bare_commas(stg);							-- splits a string at commas not included in brackets
--	procedure get_hints(proofno1,proofno2);							-- read the hints which occur in a given proof
--	procedure view_theorem_citations(proofno1,proofno2);			-- count the number of theorem citations in a given range, and print them

--					********** Collect symbols used and their properties. **********

--	procedure collect_fun_and_pred_arity(node,dno); 		-- collect the arity of functions and predicates (main entry)
--	procedure collect_fun_and_pred_arity_in(node,bound_vars); 		-- collect the arity of functions and predicates (workhorse)
--	procedure find_defined_symbols();			-- extracts the sequence of definitions, theorems, and theories from a scenario file 			

		
--	procedure parse_file(lines_tup);				-- extracts the sequence of definitions, theorems, proofs, and theories from a scenario file 
--	procedure parze_expr(stg); 										-- preliminary printing/diagnosing parse

--	procedure check_theorem_map(); 									-- check the syntax of all the theorems written to the theorem_map_file

--					********** inference tests, to be moved to logic_parser_pak after initial tests **********

--	procedure check_suppose_not(supnot_trip,pno,th_id);				-- check the indicated suppose_not inference (initial statements of proof)
--	procedure check_a_proof(proofno);								-- read a given proof and check its ELEM conclusions 
--	procedure conjoin_last_neg(stat_tup);							-- invert the last element of a collection of clauses and rewrite using 'ands' 
--	procedure conjoin_last_neg_nosemi(stat_tup);					-- invert the last element of a collection of clauses and rewrite using 'ands' 
--	procedure check_discharge(statement_stack,prior_suppose_m1,stat_in_discharge,discharge_stat_no,hint);			-- checks a discharge operation 

	use string_utility_pak,get_lines_pak,parser,logic_syntax_analysis_pak,sort_pak,proof_by_computation,logic_syntax_analysis_pak2; 
	use logic_parser_globals,prynter,algebraic_parser,proof_by_structure;	-- need access to parser global flags,etc.			

	const oc_per_ms := 8000;			-- approximate SETL opcodes per millisecond on windows server
	
	const refot := {["<->"," ¥eq "],["->"," ¥imp "],["!="," /= "],["|"," or "]};			-- for conversion of Otter syntax to Ref
--	const refot := {["<->"," •eq "],["->"," •imp "],["!="," /= "],["|"," or "]};			-- for conversion of Otter syntax to Ref (Mac version)
 	const definition_section := 1, theorem_section := 2, proof_section := 3, theory_section := 4, apply_section := 5, enter_section := 6, unused_section := 10;
							-- constant designating the kind of section we are currently in

	const otter_op_precedence :=  {["-",11],["->",6],["<->",6],["|",7],["&",8],["=",10],["!=",10],["",22],
									[",",1],["(",-1],["[",-1],["{",-1],["$0",30],["$1",30],["$2",30]};
		 				-- otter op precedences
		
	const otter_can_be_monadic := {"-"};			-- otter negation
	const otter_refversion := {["-","ast_not"],["|","ast_or"],["->","DOT_IMP"],["<->","DOT_EQ"],["","ast_of"],
									["=","ast_eq"],[",","ast_list"],["&","AMP_"],["!=","/="]};

			-- globals used in 'parse_file' and 'take_sections'. See comment in 'take_sections' for explanation
	var sections,def_sections,theorem_sections,proof_sections,theory_sections,apply_sections,enter_sections;
	var enter_secno_map := {};		-- maps theory names into section numbers of statements which ENTER the THEORY 
	var num_sections := 0,last_thm_num;

	var is_auto;											-- flag for the 'auto' special case
	var auto_gen_stat;										-- for return of AUYTO generated statements during citation inferencingg	

	var was_just_qed := false,incomplete_proofs := [];		-- global flag for detecting proof ends; list of unfinished proofs
	var arity_symbol := {},symbol_definition := {};			-- map each defined symbol into its arity and definition
	var symbol_def := {};									-- map each defined symbol into its arity and definition
	var left_of_def := {};									-- map each defined symbol defined by DEF() into the parsed left-hand-side of its definition
	var left_of_def_found;									-- nontivial left-hand side found on definition lookup
	var current_def;										-- current definition global for collect_fun_and_pred_arity
	var try_harder := false,squash_details := false;		-- flag to  allow extra time in satisfiability search
	var ok_counts := ok_discharges := 0,nelocs,ndlocs;		-- counts of verified cases
	var conjoined_statements,neglast;						-- elements of conjunction, for listing on failure
	var tested_ok;											-- indicates result of conjunction satisfiability test 
	var current_proofno;									-- for selective debugging
	var all_free_vars,all_fcns;								-- globals for 'find_free_vars_and_fcns' function
 	var first_proof_to_check,last_proof_to_check;			-- limits for range of proofs to be checked syntactically
 
 	var digested_proof_handle := OM,theorem_map_handle := OM,theorem_sno_map_handle := OM,theory_data_handle := OM;
			-- handle for file of digested proofs, theorem_map, theorem_sno_map
	var digested_proofs,theorem_map,theorem_sno_map,inverse_theorem_sno_map;   -- globals for proof checking
	
	const omit_citation_set := {};				-- theorem citation cases to be bypassed
	
	var nelocs_total := 0, ok_total := 0;			-- to get total OKs in ELEM inferences
	var ndisch_total := 0, ok_disch_total := 0;			-- to get total OKs in discharge inferences
	var citation_check_count := 0,citation_err_count := 0; -- to track errors in discharge inferences
	var ordrd_free_vars;							-- for finding free variables of a formula in order of occurrence
	var list_of_symbol_occurences;					-- for finding free symbols of a formula
	var labeled_pieces := {};						-- maps proof labels into labeled pieces of statements
	
	var theorems_file;	-- string designating the raw scenario file (path included)
	var definitions_handle;
	var suppose_not_map; 				-- maps proof number into triple [suppose_vars,suppose_stat,thm]

	var optimization_mark := false;					-- 1/0 on proof steps, indicating optimization desired
	var optimize_whole_theorem := false;			-- flag: optimize by default?
	var range_to_pretty;							-- string descriptor of range of theorems to be prettyprinted
--	var running_on_server := true;					-- flag: are we running on the server, or standalone
	const just_om_set := {"OM"};					-- pointless descriptor since it applies to everything
	var addnal_assertions := "";			-- addnal_assertions supplied by proof_by_structure; vars_to_descriptors used
	var statement_stack;							-- made global for debugging only
	var use_pr_by_str_set := {};					-- collection of section numbers for proofs in which proof_by_structure is to be used
	
--procedure geht_lines(file); printy(["opening file: ",file]); handl := open(file,"TEXT-IN"); if handl = OM then printy(["bad open"]); stop; end if; close(handl); printy(["closed"]); end geht_lines;

		-- ******************************************************************************* 
		-- ******** MAIN ENTRY TO THE LOGIC SYSTEM, CALLED BY THE PHP SERVER CODE ******** 
		-- ******************************************************************************* 
		-- THIS IS SET UP TO ALLOW THE VERIFIER TO BE EXECUTED IN A 'STANDALONE' MODE ALSO
		-- ******************************************************************************* 
--procedure unicode_unpahrse(tree);		-- ******** unparse in one of two modes ******** 	
--	return if running_on_server then unicode_unparse(tree) else unparse(tree) end if;
--end unicode_unpahrse;

procedure verifier_invoker(uid);		-- ******** master invocation routine ******** 	
			
			-- first determine the location of the input, working, and output files fom the uid. 
			-- if this is OM, it  is assumed that we are running standalone.
			
	abend_trap := stoprun;				-- set an abend for debugging after possible crash 
	uid_copy := uid;
	span(uid_copy,".,0123456789");		-- determine if the supposed uid is actually a range of theorems to be checked
	
if uid_copy /= "" then 				-- we are running on the server, so the file access depends on the user id
									-- otherwise the nominal uid is actually the list of proofs to be checked, 
									-- given in the same form as for the web environment
	running_on_server := true;
	command_file := uid + "F0";				-- command line for this user

			-- use the command_line parameters to set up a call to the main logic verifier
			-- because of command_line problems in the php version these are read from a file set up by the php
	command_handle := open(command_file,"TEXT-IN"); 
	geta(command_handle,cl); 		-- get the information described below
	close(command_handle); 			-- release the small file that it comes from

				-- the information supplied gives user_prefix,share_flag,range_to_check,files_list,range_to_pretty
				-- in blank-delimited format
	[user_prefix,share_flag,range_to_check,files_list,range_to_pretty] := breakup(cl," ");
--print("user_prefix: ",[user_prefix,share_flag,range_to_check,files_list]); stop;
	files_list := breakup(files_list,",");

	range_to_check := read_range(range_to_check)?[];		-- convert to list of proofs to be printed; use empty range if range is bad
	
	dump_theorems_handle := open(uid + "theorem_summary","TEXT-OUT");		-- open handles to the working files to be used
	dump_defs_handle := open(uid + "definition_summary","TEXT-OUT");
	dump_theories_handle := open(uid + "theory_summary","TEXT-OUT");
	dump_theorems_flag := (range_to_check = [1]);			-- dump theorems in this case

--print("FILE SETUP"); 
			--- set up the list of files to be loaded. This will include the common scenario if the share flag is set,
			-- as well as whatever supplementary scenario file sthe user has uploaded to the server
	files_to_load := if share_flag = "Share" then ["common_scenario.txt"] else [] end if;
	files_to_load +:= [user_prefix + "F" + j: fname = files_list(j) | fname /= "" ];
	files_to_load with:= (upf4 := user_prefix + "F4");				-- include the final scenario segment
	
	close(open(uid + "Err","TEXT-OUT"));				-- clear the two error files that might be used
	close(open(uid + "Ferr","TEXT-OUT"));

else		-- we are running standalone in the setlide folder 

	running_on_server := false;
	user_prefix := file_path := "jacks_not_in_distribution/aetnaNova_paks_eug_visit/";			-- folder containing files
	range_to_check := read_range(uid)?[];			-- set the range to check from the parameter
	
	dump_theorems_handle := open(file_path + "theorem_summary","TEXT-OUT");		-- open handles for the files to which the theorems will be dumped
	dump_defs_handle := open(file_path + "definition_summary","TEXT-OUT");
	dump_theories_handle := open(file_path + "theory_summary","TEXT-OUT");
	dump_theorems_flag := (range_to_check = [1]);			-- dump theorems in this case

	dump_theorems_handle2 := open(file_path + "theorem_summary2","TEXT-OUT");		-- in the online case, a dump in unpretty form will also be generated
	dump_theories_handle2 := open(file_path + "theory_summary2","TEXT-OUT");		-- in the online case, a dump in unpretty form will also be generated

			--- set up the list of files to be loaded. This will include the common scenario if the share flag is set,
			-- as well as whatever supplementary scenario file sthe user has uploaded to the server
	files_to_load := [file_path + "common_scenario.txt",file_path + "supp_scenario.txt"];			-- allow two pieces

end if;

--print("files_to_load: ",files_to_load," ",user_prefix," ",#get_lines(files_to_load(1))," ",#get_lines(files_to_load(2))); 
				
				-- concatenate all the files constituting the overall scenario. There are up to 5 pieces.
	lines := [] +/ [if file /= upf4 then get_lines(file) else [fix_line(line): line in get_lines(file)] end if: file = files_to_load(j)];
--printy(["lines: "," ",files_to_load," ",[get_lines(file): file in files_to_load],"*",share_flag,"*"]); stop;

	starting_time := time(); cycles_inferencing := 0;				-- note the starting time of the run
								-- cycles_inferencing will be accumulated

	parse_Defs_w_proofs(lines);				-- parse the assembled lines

	if was_syntax_error then print("STOPPED ON SYNTAX ERROR *******"); stop; end if;
	
	close(dump_theorems_handle);			-- done with this file
	close(dump_defs_handle);				-- done with this file
	close(dump_theories_handle);			-- done with this file

	if not running_on_server then  			-- also close the raw form dump files if not on server
		close(dump_theorems_handle2); 
		close(dump_theories_handle2); 

			-- def_tuple, collected by parse_Defs_w_proofs, has entries [theory_name,definition]; 
			-- reconstruct it as a map {[symbol_defined,[theory,definition]]}; check the single_valuedness of this map;
			-- and then (subseqently) generate a map {[symbol_defined,symbols_used]} for graphical display
			-- 'theory' is the theory to which the symbol belongs.
--for [theory,definition] in def_tuple loop print("get_symbols_from_def: ",definition," ",get_symbols_from_def(definition)); end loop;

		symbs_to_defs := {[symb,[theory,definition]]: [theory,definition] in def_tuple,symb in get_symbols_from_def(definition)};
		symbs_to_defs_as_setmap := {[x,symbs_to_defs{x}]: x in domain(symbs_to_defs)};
		
		multiply_defined := {x: [x,y] in symbs_to_defs_as_setmap | #y > 1};		-- check for symbols with more than one definition
		
		if multiply_defined /= {} then 		-- there are multiply defined symbols: diagnose them and note error
			printy(["\n****** Error: the following symbols are multiply defined: " + multiply_defined + ". They have the following definitions: "]); 
			error_count +:= 1; 			-- note the error
			
			for symb in multiply_defined loop
			
				printy(["<P>Multiple definitions for symbol",symb]);

				for [theory,definition] in symbs_to_defs_as_setmap(symb) loop
					printy(["<br>     ",definition]); 			
				end loop;

			end loop;
			
			symbs_to_defs := {[x,arb(y)]: [x,y] in symbs_to_defs_as_setmap};	-- force this map to be single-valued

		end if;
		
		dump_defs_handle2 := open(file_path + "definition_summary2","TEXT-OUT");		-- target file for this form of definition dump
		printa(dump_defs_handle2,symbs_to_defs);		-- write out the map {[symbol_defined,[theory,definition]]}
		close(dump_defs_handle2); 						-- release the file

	end if;
	
	suppose_not_lines := get_lines(user_prefix + "suppose_not_file"); 	-- get the suppose_not lines for the various proofs

	suppose_not_map  := {}; 				-- convert to map by converting strings to tuples
	for lin in suppose_not_lines loop reads(lin,x); suppose_not_map with:= [x(4),x(1..3)]; end loop;
--print("suppose_not_map: ",suppose_not_map);

	post_alg_roles("DOT_S_PLUS,+,S_0,0,S_1,1,DOT_S_MINUS,-,S_REV,--,DOT_S_TIMES,*,SI,ring");
	post_alg_roles("DOT_PLUS,+,DOT_TIMES,*,0,0,1,1,DOT_MINUS,OM,ZA,ring");
	post_alg_roles("DOT_RA_PLUS,+,RA_0,0,RA_1,1,DOT_RA_MINUS,-,RA_REV,--,DOT_RA_TIMES,*,RA,ring");
	post_alg_roles("DOT_R_PLUS,+,R_0,0,R_1,1,DOT_R_MINUS,-,R_REV,--,DOT_R_TIMES,*,RE,ring");
--	post_alg_roles("DOT_C_PLUS,+,C_0,0,C_1,1,DOT_C_MINUS,-,C_REV,--,DOT_C_TIMES,*,CM,ring");

--print("SERVER no syntax error*********"); 
	check_proofs(range_to_check); 		-- check the indicated range of proofs			
--print("SERVER checked_proofs*********"); stop;
	ending_time := time();				-- note the ending time of the run

	[hrs,mins,secs] := [unstr(x): x in breakup(starting_time,":")]; sts := 3600 * hrs + 60 * mins + secs;
	[hrs,mins,secs] := [unstr(x): x in breakup(ending_time,":")]; ets := 3600 * hrs + 60 * mins + secs;

	printy(["\n<BR>Starting time of run: ",starting_time," ended at: ",ending_time," elapsed time in seconds: ",ets - sts]);
	printy(["\n<BR>Nominal milliseconds of run: ",opcode_count()/ oc_per_ms," millisecs in basic inferencing: ",cycles_inferencing/oc_per_ms]);
	
	if dump_theorems_flag then		-- if the theorem list is being displayed then
		citation_analysis(if running_on_server then uid else file_path end if);		
				-- prepare a citation analyis table using the three semidigested files prepared from the scenarios
	 end if;
	 
	err_ohandle ?:= open(uid + "Err","TEXT-OUT");	-- open handle for detailed error output if not already open

	printa(err_ohandle,"</DIV>");		--close the last textarea(no) and division left open by the SETL code

	printa(err_ohandle,"<script>");

	for l_item = divlist(jd) loop				-- hide all the error detail reports
		printa(err_ohandle,"document.getElementById('" + l_item + "').style.display = " + if jd = 1 then "'block'" else "'none'" end if + ";");
	end loop;
	
	printa(err_ohandle,"misc_style = document.getElementById('misc').style;");
	printa(err_ohandle,"good_cases_style = document.getElementById('good_cases').style;");
	printa(err_ohandle,"bad_summary_style = document.getElementById('bad_summary').style;");
	printa(err_ohandle,"bad_details_style = document.getElementById('bad_details').style;");
	printa(err_ohandle,"thm_summary_style = document.getElementById('thm_summary').style;");
	printa(err_ohandle,"def_summary_style = document.getElementById('def_summary').style;");
	printa(err_ohandle,"thry_summary_style = document.getElementById('thry_summary').style;");
	printa(err_ohandle,"citations_style = document.getElementById('citations_div').style;");

	printa(err_ohandle,"current_errcase_shown = '';");		-- keep track of the current error case being shown in detail
	printa(err_ohandle,"display_bad_cases();");		-- show the bad cases division
	
	printa(err_ohandle,"function display_good_cases() {");		-- show the good cases division	
		printa(err_ohandle,"clear_all_divs();");
		printa(err_ohandle,"good_cases_style.display = 'block';");
	printa(err_ohandle,"}");
		
	printa(err_ohandle,"function display_bad_cases() {");		-- show the bad cases division
		printa(err_ohandle,"clear_all_divs();");
		printa(err_ohandle,"bad_summary_style.display = 'block';");
		printa(err_ohandle,"bad_details_style.display = 'block';");
	printa(err_ohandle,"}");
		
	printa(err_ohandle,"function display_misc_info() {");		-- show the misc. info division
		printa(err_ohandle,"clear_all_divs();");
		printa(err_ohandle,"misc_style.display = 'block';");
	printa(err_ohandle,"}");

	printa(err_ohandle,"function butt_click(div_id) {");		-- turn of prior detail id and turn on new	
		printa(err_ohandle,"if (current_errcase_shown != '') {document.getElementById(current_errcase_shown).style.display = 'none';};");
		printa(err_ohandle,"current_errcase_shown = div_id;");
		printa(err_ohandle,"document.getElementById(div_id).style.display = 'block';");
	printa(err_ohandle,"}");

	printa(err_ohandle,"function display_thm_summary() {");		-- display the theorem summary
		printa(err_ohandle,"clear_all_divs();");
		printa(err_ohandle,"thm_summary_style.display = 'block';");
	printa(err_ohandle,"}");

	printa(err_ohandle,"function display_def_summary() {");		-- display the definitions summary
		printa(err_ohandle,"clear_all_divs();");
		printa(err_ohandle,"def_summary_style.display = 'block';");
	printa(err_ohandle,"}");

	printa(err_ohandle,"function display_thry_summary() {");		-- display the definitions summary
		printa(err_ohandle,"clear_all_divs();");
		printa(err_ohandle,"thry_summary_style.display = 'block';");
	printa(err_ohandle,"}");

	printa(err_ohandle,"function display_citations() {");		-- display the definitions summary
		printa(err_ohandle,"clear_all_divs();");
		printa(err_ohandle,"citations_style.display = 'block';");
	printa(err_ohandle,"}");

	printa(err_ohandle,"function clear_all_divs() {");		-- clear the main divisions of the output window
		printa(err_ohandle,"misc_style.display = 'none';");
		printa(err_ohandle,"good_cases_style.display = 'none';");
		printa(err_ohandle,"bad_summary_style.display = 'none';");
		printa(err_ohandle,"bad_details_style.display = 'none';");
		printa(err_ohandle,"thm_summary_style.display = 'none';");
		printa(err_ohandle,"def_summary_style.display = 'none';");
		printa(err_ohandle,"thry_summary_style.display = 'none';");
		printa(err_ohandle,"citations_style.display = 'none';");
	printa(err_ohandle,"}");
		
	printa(err_ohandle,"</script>");

end verifier_invoker;

procedure fix_line(line); return join(breakup(line,char(149)),char(165)); end fix_line;		-- undo HTML character scramble

procedure citation_analysis(uid);		-- prepare a citation analyis table using the three semidigested files prepared from the scenarios
						-- utility for preparing inter-theorem citation graph
						-- uses digested_proof_file, theorem_sno_map_file, and theorem_map_file,
						-- which are all perpared by parse_and_check.stl	
						-- prepares an inverted citation index of the form illustrated by:
						-- note that if we are running standalone, then 'uid' is actually the file path being used
	-- Theorem 17: Ult_membs({S}) = {S} + Ult_membs(S) is cited by: {"T18", "Ttransfinite_member_induction1"}
	
						-- the set of theorems never cited is also reported.
						-- a direct citation index is available by e,abling a print loop disabled below.

	handle := open(uid + "digested_proof_file","TEXT-IN"); reada(handle,digested_proofs); close(handle);
	handle := open(uid + "theorem_sno_map_file","TEXT-IN"); reada(handle,theorem_sno_map); close(handle);
	handle := open(uid + "theorem_map_file","TEXT-IN"); reada(handle,theorem_name_to_stat); close(handle);
	citations_handle := open(uid + "citations_file","TEXT-OUT");
	
	sno_theorem_map := {[y,x]: [x,y] in theorem_sno_map};
	
	thm_secnos_to_citations := {};
	
	for pf_secno_then_hints_and_stats in digested_proofs(2..) loop
		thm_name := sno_theorem_map(thm_secno := abs(pf_secno_then_hints_and_stats(1)) - 1); 
		hints_and_stats := pf_secno_then_hints_and_stats(2..);
		thm_secnos_to_citations(thm_name) := [thm_secno,{thm_cited: [hint,-] in hints_and_stats | (thm_cited := citation_of(hint)) /= OM}];
	end loop;

	thms_with_citations := [[x,theorem_name_to_stat(x),y]: [-,x,y] in merge_sort([[tsecno,tname,t_cites]: [tname,[tsecno,t_cites]] in thm_secnos_to_citations])];
	
	all_citations := {} +/ [z: [-,-,z]  in thms_with_citations];

	uncited_thms := [x: [x,-,-]  in thms_with_citations | x notin all_citations];
	
				-- now prepare the inverted citation index
	thms_to_cited_by := {[yy,x]: [x,-,y]  in thms_with_citations, yy in y};

	thms_to_cited_by := merge_sort([[theorem_sno_map(yy),yy,theorem_name_to_stat(yy),thms_to_cited_by{yy}]: yy in domain(thms_to_cited_by) | theorem_sno_map(yy) /= OM]);
	
	printa(citations_handle,"<B>Theorems never cited are:<P></B>",merge_sort(uncited_thms));

	printa(citations_handle,"<B><P>Inverted citation index<P></B>");
	
	for [-,name,stat,cited_by] in thms_to_cited_by loop 
		printa(citations_handle,"<B><P>Theorem ",name(2..),": </B>",stat,"<P>     <B>is cited by:    </B>",cited_by);
	end loop; 

	close(citations_handle);
	
end citation_analysis;
	
	procedure get_symbols_from_def(def_stg);			-- get the symbol or symbols defined from the text of the definition
		-- this routine must handle various styles of definition: simple definitions of the form name(params) := expn;
		-- operator definitions of the form Def(X •op Y) := expn; and the corresponding monadic form; 
		-- definitions by theory application, of the form APPLY(thryvar1:output_symbol1,...).
		-- this last form of definition can define multiple symbols simutaneously.
		-- we return the tuple of defined symbols, which is a singleton in most cases.
		
		span(def_stg,": \t"); 		-- scan whitespace
		
		mayapp := match(def_stg,"APPLY_otter"); 			-- see if we have an APPLY case. Note that these have no label
		
		if mayapp = "" then mayapp := match(def_stg,"APPLY"); end if;			-- see if we have an APPLY case. Note that these have no label
		
		if mayapp /= "" then 	-- we have an APPLY case
			 span(def_stg," \t"); match(def_stg,"("); outlist := break(def_stg,")");			-- get the output list of the definition
			 outlist := breakup(breakup(suppress_chars(outlist," \t"),","),":");		-- redo the outlist as a tuple of pairs
--print("outlist: ",outlist);
			 return [y: [-,y] in outlist];			-- return the list of output symbols
		end if;
		
		break(def_stg,":"); span(def_stg,": \t"); 		-- drop the definition label
		lbr := match(def_stg,"["); 
		if lbr /= "" then break(def_stg,"]"); span(def_stg,"] ");  end if;			-- drop the definition comment if any
				-- at this point we should have reached the left side of the definition
		
		defleft := break(def_stg,":"); rspan(def_stg," \t");	-- otherwise find the separating ':=" of the definition
--print("defleft: ",defleft);
		left_parsed := parse_expr(defleft + ";")(2); 			-- get the parse tree of the left-hand side
		
		if is_string(left_parsed) then return [left_parsed]; end if;			-- this is the definition of a constant, like Za; return i directly
		opleft := left_parsed(2);				-- the 'top operator' of the definition, which must be [ast_of,op,[list,args]]
		
		if opleft /= "DEF" then return [opleft]; end if;		-- if this is not "DEF", return it directly as a unary tuple

				-- otherwise we must have DEF(expn) := ..., expn being either monadic or binary
		return [left_parsed(3)(2)(1)];		-- e.g. [ast_of,op,[list,[op,x,y]]]; return this as a unary tuple
				
	end get_symbols_from_def;
	
	procedure citation_of(hint);			-- find the theorem cited by a hint, or return OM if is not a theorem citation
		pieces := segregate(suppress_chars(hint,"\t "),"-->T"); 
		return if exists piece = pieces(j) | piece = "-->T" then "T" + thm_part(pieces(j + 1)) else om end if;
	end citation_of;

	procedure thm_part(thm_and_constraint);			-- find the theorem cited by a hint, or return OM if is not a theorem citation
		front := break(thm_and_constraint,"("); 
		return front;
	end thm_part;

procedure stoprun(); print("Stopped by error"); stop; end stoprun;

					-- **************************** Procedures **************************

procedure miscellaneous_tests();	-- repository for miscellaneous top-level logic verifier tests under development

--abend_trap := lambda; for j in [1..2000000] loop x := j + 1; end loop;	end lambda;	

	init_logic_syntax_analysis(); 		-- initialize for logic syntax-tree operations 

					-- ******************************************************************
					-- *************** Auxiliary tests of single formulae ***************
					-- ******************************************************************
--stg := "(Ord(s) and Ord(t) and t •incin s and t /= s and t /= arb(s - t)) and (s - t = 0 and arb(s - t) = 0 or" + 
--     "(arb(s - t) in (s - t) and arb(s - t) * (s - t) = 0)) and ((not(arb(s - t) in s and arb(s - t) * (s - t) = 0)));";
--printy([parse_expr(stg)]); printy([sne := setl_num_errors()]);if sne > 0 then printy([setl_err_string(0)]); end if; 
	printy(["stopped due to: stop in test"]); stop;

	printy([find_free_vars(parse_expr("Card(#S) and (FORALL f in {} | one_1_map(f) and range(f) = S and domain(f) = #S);"))]);
	printy([(parse_expr("Card(#S) and (FORALL f in {} | one_1_map(f) and range(f) = S and domain(f) = #S);"))]); 
	printy(["stopped due to: stop in test"]); stop;
	
	printy([time()," ",tree := parse_expr("{{c},{{d},d}} - {{c}} /= {{{{d},d}}};")]);		-- INFERENCE CASE WHICH IS FAILING ******
	printy([(model_blobbed(tree(2))?"UNSATISFIABLE")," ",time()," "]); 
	printy(["stopped due to: stop in test"]); stop;

get_hints(1,400); 
printy(["stopped due to: stop in test"]); stop;
view_theorem_citations(241,340); stop;
					-- ******************************************************************
					-- **************** Major tests of multiple formulae ****************
					-- ******************************************************************
--->reparse
--	parse_Defs_w_proofs();	
	
	set_output_phase(1);									-- direct the following output to the main output file
	printy(["<P>*********** Run Ended **********"]); 
	printy(["stopped due to: end of run"]); stop;		-- ********* parse the Defs_w_proofs file	

	check_theorem_map(); 
	printy(["stopped due to: end of run"]); stop;			-- check the syntax of all the theorems written to the theorem_map_file


end miscellaneous_tests;

					-- ******************************************************************
					-- ***************** Top level parsing procedures *******************
					-- ******************************************************************

--procedure parse_scenario(file_name,first_proof,last_proof);			-- parse a specified Defs_w_proofs file		
--	printy(["Parsing of: ",theorems_file := file_name," starts at;",time()]);   
--	parse_Defs_w_proofs();
				-- note the range of proofs to be checked syntactically
--end parse_scenario;

procedure parse_Defs_w_proofs(lines_tup);			-- parse the Defs_w_proofs file		
--->scenario source
--	theorems_file ?:= "Diana:Pub:Logic_repository:Defs_w_proofs_modif.pro";
--	theorems_file ?:= "Diana:Pub:Logic_repository:Defs_w_proofs_modif";

--	lines_tup := get_lines(theorems_file);					-- read the full theorems_file (with definitions and theories)
printy(["Proof scenario file  consists of ",#lines_tup," lines"]); 
	first_proof_to_check := 1; last_proof_to_check := 1000000;
	parse_file(lines_tup);									-- extract the sequence of definitions, theorems, proofs, and theories from the scenario file

	read_proof_data();	-- ensure that the list of digested_proofs,   
								-- the theorem_map of theorem names to theorem statements, 
								-- the theorem_sno_map of theorem section numbers to theorem statements,
								-- its inverse inverse_theorem_sno_map,
								-- the theory-related maps parent_of_theory,theors_defs_of_theory,assumps_and_consts_of_theory
								-- and the theory_of map sending each theorem and definition into its theory
								-- are all available. NOTE: this checks internally to ensure that it is done only once

	pretty_range := read_range(range_to_pretty?"")?[];		-- convert to list of proofs to be printed; use empty range if range is bad
--	print("<BR>Ready for prettyprinting ******** "," ",pretty_range);  
	
	for ptno in pretty_range loop print(pretty_theorem(ptno)); end loop;

end parse_Defs_w_proofs;


--	procedure find_includes(tup_of_sets,test_set);
--		return [j: set = tup_of_sets(j) | set incs test_set];
--	end find_includes;
--	
--	procedure find_included(tup_of_sets,test_set);
--		return [j: set = tup_of_sets(j) | test_set incs set];
--	end find_included;

	procedure pretty_theorem(theorem_num);	-- returns [thm_name (with 'T'),thm_statement,thm_proof (digested into pairs)]
			
		if (dpj := digested_proofs(theorem_num)) = OM then return ["TUNDEF","UNDEF",["UNDEF"]]; end if;

		if (dpj(1) > 0) then 			-- allow for theorems marked for use of proof by structure, where these numbers are reversed
			thm_name := othm_name := inverse_theorem_sno_map(dpj(1) - 1)?("TUNDEF" + dpj(1));		-- name of the theorem
		else
			thm_name := othm_name := inverse_theorem_sno_map(-(dpj(1) + 1))?("TUNDEF" + dpj(1));		-- name of the theorem
		end if;

		thm_name := "Theorem " + thm_name(2..) + ": ";
		thm_stat := theorem_map(othm_name);											-- theorem statement
		thm_proof := dpj(2..);														-- proof [hint,labeled_stat]s
	
		return "<P>" + thm_name + unicode_unpahrse(parse_expr(thm_stat + ";")) + ". Proof:<BR>" +/ [pretty_line(line): line in thm_proof];
		
	end pretty_theorem;

	procedure pretty_line(proof_line_pair);				-- create the pretty version of a single proof line

		[hint,stat] := proof_line_pair;
		
			-- if there is a '-->' in the hint, make sure that this is prettuprinted
		pieces := segregate(hint,"->");

		if pieces(2) = "-->" then 		-- prettyprint the prefixed section
			piece1 := pieces(1);
			span(piece1," \t"); rspan(piece1," \t"); 	-- remove any encoling whitespace
			piece1a := if piece1 = "" then piece1 elseif piece1(1) = "(" then unicode_unpahrse(parse_expr("F" + piece1 + ";"))(2..) else 
					unicode_unpahrse(parse_expr("F(" + piece1 + ");"))(2..) end if;
			hint := "" +/ ([piece1a] + pieces(2..));
--print("prefixed section hint: ",pieces(1)," ",piece1a);
		end if;
		
					-- we must also unicode the substituted functions and constants of 'APPLY statements'
		span(hint," \t");		-- removed prefixed whitespace;
		hint_copy := hint;
		ap := match(hint_copy,"APPLY");
		if ap /= "" then				-- we have an APPLY statement: APPLY(..) theory_name(assumed-->replacement,..)
			[theory_name,apply_params,apply_outputs] := decompose_apply_hint(hint)?[]; 
--print("[theory_name,apply_params,apply_outputs]: ",[theory_name,apply_params,apply_outputs]);
			hint := "APPLY(" + apply_outputs + ") " + theory_name + "(" + join([unicode_apply_param(para): para in apply_params],",") + ") "; 
		end if;
		
		[unlab_stat,lablocs,labs] := drop_labels(stat);			-- get the unlabeled form, the label location, and the labels
--print("[unlab_stat,lablocs,labs]: ",[unlab_stat,lablocs,labs]);		

		if lablocs = [] then 
			stat := unicode_unpahrse(parse_expr(unlab_stat + ";")); 		-- no label
		elseif lablocs = [1] then 
			stat := labs(1) + " " + unicode_unpahrse(parse_expr(unlab_stat + ";")); 		-- just one label
		else
			
			pieces := [to_unicode(unlab_stat(ll..lablocs(j + 1)?#unlab_stat),labs(j)): ll = lablocs(j)];
--print("the pieces: ",pieces);
			
			stat := "" +/ pieces;		-- multiple labels; in this case we break the satement at the label positions
													-- and convert the pieces separately into unicode form, 
													-- then re-inserting the labels and concatenating
		end if;
		
		return 4 * " " + hint + " ==> " + stat + "<BR>";

	end pretty_line;

	procedure unicode_apply_param(stg_param);		-- convert item from theory application substitution list to unicode form
		front := break(stg_param,">"); mid := match(stg_param,">");
		return front + mid + unicode_unpahrse(parse_expr(stg_param + ";"));
	end unicode_apply_param;

	procedure to_unicode(stg_piece,lab);		-- convert piece of formula, possibly ending in ampersand, to unicode

		conj_sign := rspan(stg_piece," \t&");		-- break off the trailing ampersand
		return lab + " " + unicode_unpahrse(parse_expr(stg_piece + ";")) + conj_sign;

	end to_unicode;

	procedure parse_file(lines_tup);	-- extracts the sequence of definitions, theorems, proofs, and theories from a scenario file
		-- This procedure reads and parses a raw scenario file, converting it to the 'digested' set of files
		-- used during subsequent logical checking of the scenario. These are: theory_data_file, theorem_sno_map_file, 
		-- theorem_map_file, suppose_not_file, digested_proof_file, definition_tup_file.
		
		-- The work of this procedure is complete when these files have been written. All the files are written in readable
		-- 'plain text' format.

		-- The main file read to check various kinds of inferences in the verifier is 'digested_proof_file'.

-- (1) digested_proof_file is a large list of tuples, each tuple representing one of the successive lines of a proof as a pair 
-- [step_descriptor,formula], for example ["ELEM", "{z} * s_inf /= 0 & {z} * s_inf = {z}"]. The labels of internally labeled
-- statements are left in the 'formula' part of this pair, for example

-- ["a --> Stat1", "Stat2: (a in {cdr([x,f(x)]): x in s} & a notin {f(x) : x in s}) 
--									or (a notin {cdr([x,f(x)]): x in s} & a in {f(x) : x in s})"]

-- ******* Note however ******* that each proof-representing tuple is prefixed by an integer, 
-- which is the 'section number' of the corresponding proof. 
-- This number is one more than the section number of the corresponding theorem statement, which is used in the theorem_sno_map_file
 
-- (2) suppose_not_file is a list of triples [subst_list,statement_in_suppose_not,statement_in_theorem] used to check the correctness
-- of the Suppose_not statements used to open proofs by contradiction.

-- (3) theorem_map_file contains a set of pairs giving a map of abbreviated theorem names (often of the form Tnnn)
-- into the corresponding theorem statement.

-- (4) theorem_sno_map_file contains a set of pairs giving a map of abbreviated theorem names (often of the form Tnnn)
-- into the corresponding theorem section numbers. It also contains pairs which map symbol definition names into their associated
-- section numbers, and which map theory names into their section numbers.

-- (5) definition_tup_file contains a set of triples, each giving the name of a definition, the body of the definition, 
-- and the theory to which it belongs

-- (6) theory_data_file is comprised of three subparts. The first is a map of theories into their parent theories. 
-- The second maps the name of each theory into the list of names of all the theorems and definitions belonging to the theory. 
-- The third maps the name of each theory into a pair giving the assumed function and the assumptions of the theory.

	-- This routine handles about 1,700 lines/second on a 1.6 gigacycle Mac G5, and about 7,000 lines/second on a modern Pentium.
	-- Once syntax analysis is successful, this routine does various more detailed semi-syntactic, semi-semantic checks.			

	-- We allow segments of the scenario file input to be indicated by special lines starting with --BEGIN HERE
	-- and --PAUSE HERE (which suspends analysis of scenario lines); also --END HERE, which terminates scenario processing.

	-- Lines can be grouped together into single logical lines by including a '¬' (option l) mark at the end. Over the web this is Â
	
	-- Comment lines starting with -- are ignored.

	-- Definitions must start with either "Def " or "Def:".

	-- Theorems must start with either "Theorem " or "Theorem:". 	
		-- Theorem statements can contain a prefixed comment in square brackets,  as in Theorem 251: [Zorn's Lemma] .... Proof:...;
		-- Theorems without a number are given dummy numbers of the form "TUnnn";
		-- Theorem statements must consist either of a single extended line, or of two such lines, the first containing the
				-- theorem comment in square brackets.

	-- Proofs must start with "Proof:"

	-- We now start to assemble (extended) lines into sections, which can be either definition_sections, 
	-- theorem_sections, proof_sections, or unused_sections. Section starts are marked 
	-- by the appearance of one of the significant marks "Def ","Def:","Theorem ","Theorem:", or "Proof:"
	-- Definition and theorem sections are also terminated by the first empty line after their opening,
	-- and all following lines without one of the above headers are skipped.

	-- These sections are collected into an overall tuple called 'sections'; the indices of elements 
	-- of various kinds (theorems, definitions, proofs, etc.) are collected into auxiliary tuples called
	-- theorem_sections, def_sections, theory_sections, apply_sections, enter_sections, and proof_sections
var
	lines_count,
	use_lines,
	n_ltup, line_no;

		init_logic_syntax_analysis(); 						-- initialize for logic syntax-tree operations 
		lines_count := 0;
		
		use_lines := false;									-- needs to be turned on by a "--BEGIN HERE" switch
		
		sections := [];		-- Will collect the usable lines, parsing them into sections consisting of definitions, theorems, theories, and 
							-- theory entry and display directives. Theories consist of theory headers and theory bodies. A theory body runs from
							-- the end of its header or entry directive to the next following header or entry directive.
		
		current_section := def_sections := theorem_sections := proof_sections := theory_sections := apply_sections := enter_sections := [];
				-- initialize the tuples used to collect section lines and section indices
				
		n_ltup := #lines_tup; line_no := 0;
		
		while (line_no +:= 1) <= n_ltup loop			-- process all the scenario lines till EOF or --END HERE
--print("line_no: ",line_no," ",lines_tup(line_no));
			line := lines_tup(line_no);					-- get the next line
			rspan(line," \t");							-- remove trailing whitespace

			--while line_no < n_ltup and (nl := #line) > 0 and (line(nl) = "¬") loop		-- group using line continuation symbols
			while line_no < n_ltup and (nl := #line) > 0 and (line(nl) = "Â") loop		-- group using line continuation symbols
				line(nl..nl) := lines_tup(line_no +:= 1);		-- continue as long as there is a continuation mark
				rspan(line," \t");								-- remove trailing whitespace
--printy(["CONTINUING: ",line]); 
			end loop;

						-- examine for --BEGIN HERE, --PAUSE HERE, and --END HERE marks, which delimit the ranges of lines to be considered
			if not use_lines then		-- look for "--BEGIN HERE"
				ism := match(line,"--BEGIN HERE"); 

				if ism /= "" then 
					nprint(" - processing starts at line: ",line_no); 
					use_lines := true; 
				end if;		-- if found, then switch on line collection

				continue; 				
 
 			end if;

			is_off := match(line,"--PAUSE HERE");
			if is_off /= "" then use_lines := false; print( " - suspended at line: ",line_no); continue; end if;
					 		-- if found, then switch off line collection

			is_end := match(line,"--END HERE");
			if is_end /= "" then							-- collect the final section and exit
				print(" -  ends at line: ",line_no);
				exit; 
			end if; 
	
				-- Here we start assembling (the already extended) lines into sections, which can either be
				-- a definition_section, theorem_section, proof_section, or unused_section depending on the
				-- setting of the 'now_in' value. This value is set, and the preceding run of lines collected,
				-- by the appearance of one of the significant marks "Def ","Def:","Theorem ","Theorem:", or "Proof:".
				-- Definition and theorem sections are also terminated by the first empty line after their opening,
				-- and all following lines without one of the above headers are skipped.
				
				-- The 'take_section' routine called whenever a prior section is ended by the start of a new section
				-- collects all the sections into an overall tuple called 'sections', and also (depending on their type) into 
				-- auxiliary tuples called def_sections, theorem_sections, and proof_sections
			break_at_minus := breakup(line,"-");		-- ignore all comments, which must start with '--', followed by a blank or tab
			if exists b = break_at_minus(kk) | b = "" and ((nb := break_at_minus(kk + 1)) = OM or (#nb > 0 and nb(1) notin ">BPE")) 
					then
				line := join(break_at_minus(1..kk - 1),"-"); 
				rspan(line," \t");
				if line = "" then continue; end if;			-- ignore lines containing comment only
			end if;

			line_copy := line; span(line_copy," \t"); rspan(line_copy," \t"); 		-- scan off whitespace
			
--			is_comment := match(line_copy,"--");		-- look for initial comment marks
--			if is_comment /= "" then	
--				continue; 			-- bypass comments
--			end if; 

			is_def := match(line_copy,"Def "); is_def2 := match(line_copy,"Def:");		-- look for a definition header
					  -- check for start of definition, which may have one of two forms

					-- ******* note that the 'take_section' routine takes full lines, with all tags and comments *******

			if is_def /= "" or is_def2 /= "" then 			-- end the old section and start a new one
				take_section(now_in,current_section); now_in := definition_section; current_section := [];
			end if;			-- the definition now runs up to the next significant or blank line
	
			is_theorem := match(line_copy,"Theorem "); is_theorem2 := match(line_copy,"Theorem:");		-- look for a Theorem header
					  -- check for start of Theorem, which may have one of two forms

			if is_theorem /= "" or is_theorem2 /= "" then 	-- end the old section and start a new one
				take_section(now_in,current_section); now_in := theorem_section; current_section := [];
				tpa_to_just_tp_num with:= (ntheorem_w_proofs +:= 1);	
							-- increment, and add to vector mapping all_theorems (including a top-level APPLY) number to ntheorem_w_proofs number
			end if;			-- the theorem statement header now runs up to the next significant or blank line, 
							-- or to the next line (including this) ending with 'Proof'
	
			is_proof := match(line_copy,"Proof+:");		-- look for a Proof header, allowing for proof_by_structure flag
			if is_proof = "" then is_proof := match(line_copy,"Proof:"); else use_pr_by_str_set with:= (num_sections + 1); end if;
						-- look for a Proof header; if it flags for use_proof_by_structure, then invert the section number prepended to the proof

			if is_proof /= "" then 							-- end the old section and start a new one
				take_section(now_in,current_section); now_in := proof_section; current_section := [];
			end if;			-- the theorem statement header now ends
	
			is_theory := match(line_copy,"THEORY");		-- look for a THEORY header

			if is_theory /= "" then 							-- end the old section and start a new one
				take_section(now_in,current_section); now_in := theory_section; current_section := [];
			end if;			-- the theory statement header now runs up to the next significant or blank line,
	
			is_apply := match(line_copy,"APPLY");		-- look for an APPLY statement

			if is_apply /= "" and now_in /= proof_section then 	-- note that APPLY headers can appear within proofs
				take_section(now_in,current_section); now_in := apply_section; current_section := [];
				tpa_to_just_tp_num with:= ntheorem_w_proofs;					-- add to vector, but don't increment
			end if;			-- the apply statement now runs up to the next significant or blank line,
	
			is_enter := match(line_copy,"ENTER_THEORY");		-- look for an ENTER_THEORY statement

			if is_enter /= "" then 	-- end the old section and start a new one
				take_section(now_in,current_section); now_in := enter_section; current_section := [];
			end if;			-- the ENTER_THEORY statement now runs up to the next significant or blank line

			if line = "" and (now_in in {definition_section,theorem_section,theory_section,apply_section,enter_section}) then
			 			-- end the section and go to an unused_section
				take_section(now_in,current_section); now_in := unused_section; current_section := []; 
			end if;
			
			current_section with:= line;					-- collect the line into the current section, now that we know in what section it belongs
		
			if now_in = theorem_section then 				-- look for 'Proof:' at the end of lines. These terminate the statement of a theorem.

	
			is_proof := rmatch(line_copy,"Proof+:");		-- look for a Proof header, allowing for proof_bY_structure flag
			if is_proof = "" then is_proof := rmatch(line_copy,"Proof:"); else use_pr_by_str_set with:= (num_sections + 1); end if;
						-- look for a Proof header; if it flags for use_proof_by_structure, then invert the section number prepended to the proof

			if is_proof /= "" then 				-- end the old section and start a new empty one
					take_section(now_in,current_section); now_in := proof_section; current_section := [];
				end if;			-- the theorem statement header now ends
			end if;

			if now_in = proof_section then 				-- look for 'QED' at the end of lines. These terminate the specification of a proof.

				is_qed := rmatch(line_copy,"QED"); is_qed2 := rmatch(line_copy,"QED.");
				if is_qed /= "" or is_qed2 /= "" then
					was_just_qed := true;			-- global flag for detecting proof ends
					take_section(now_in,current_section); now_in := unused_section; current_section := []; 
				end if;			-- the theorem statement header now ends
			end if;
			
		end loop; -- main while-loop of scenario processing ends here; sections have
		          -- been put together and will now be analyzed individually
		
		take_section(now_in,current_section); 			-- take the final section if any
											-- print statistics on the scenario file just analyzed
		nds := #def_sections;
		nts := #theorem_sections;
		nps := #proof_sections;
		
--		printy(["Number of source lines and sections: ",#lines_tup," ",ns := #sections," num defs: ",nds," num thms: ",nts," num proofs: ",nps]);
		
		if nds + nts + nps = 0 then 
			print("**** NO THEOREMS, DEFINITIONS, OR PROOFS HAVE BEEN DETECTED, possibly due to missing '--BEGIN HERE line.'"); 
			stop; 
		end if;
		
		thms_with_proofs := {n - 1: n in proof_sections}; thms_without_proofs := [n: n in theorem_sections | n notin thms_with_proofs];

printy(["thms_without_proofs: ",thms_without_proofs]); --for n in thms_without_proofs loop printy([sections(n)]); end loop;
printy(["incomplete_proofs: ",incomplete_proofs]); --for n in incomplete_proofs loop printy([sections(n)]); end loop;

			-- Begin syntactic and semantic checks of all the theorems, and definitions. 
			-- Make sure that no symbol is defined twice. Collect the 'arity' of all defined symbols.
			-- then go on to parse all the proof lines.
											
--	printy(["Starting theorem parse: ",time()]);		-- check the syntax of all the theorems

	for tno in theorem_sections loop 			-- 'theorem_sections' gives the section numbers of all the theorems, in order
		if (pt := pahrse_expr((tt := theorem_text(tno)) + ";")) = OM then 
			printy(["***** Illformed theorem statement: "," ",tt]); printy(["prior theorems are: ",[theorem_text(k): k in [(tno - 10) max 1..tno]]]); 
			printy(["stopped due to: syntax error"]); was_syntax_error := true; return; 
		end if;

		collect_fun_and_pred_arity(pt(2),0); 

	end loop;

--	printy(["Done theorem parse: ",time()]);
	
--	printy(["Starting definitions parse: ",time()]);

	for dno in def_sections loop 

		dt := definition_text(dno);	span(dt," \t");	-- get the text of the definition
	
		if (ndt := #dt) > 5 and dt(1..5) = "APPLY" then check_apply_syntax(dt); continue; end if;		
			-- special processing for definitions by "APPLY"
		
		if ndt = 0 then continue; end if;		-- bypass blank text
		dt_start := break(dt,":"); may_eq := match(dt,":•eq"); if may_eq = "" then may_eq := match(dt,":¥eq"); end if;
				-- reduce predicate definitions to function form to keep parser happy
		dt := dt_start + if may_eq /= "" then ":=" else "" end if + dt;

		if (pt := pahrse_expr(dt + ";")) = OM then 
			printy(["***** Syntactically illformed definition: "," ",dt + ";"]); 
			printy(["stopped due to: syntax error"]); was_syntax_error := true; return; 
		end if;
 
		collect_fun_and_pred_arity(pt,dno); 

	end loop;
--printy(["definition_text: ",["\n" + definition_text(dno): dno in def_sections]]);
--	printy(["Done definitions parse: ",time(),"\n"]); 
	
			-- print diagnostic messages for symbols with multiple arities and symbols with multiple definition  

	multip_arity := {[symb,arities]: symb in domain(arity_symbol) | #(arities := arity_symbol{symb}) > 1};
	printy(["symbols with multiple arities: ",multip_arity]);			-- check for symbols with multiple, conflicting arities

--	printy([merge_sort(arity_symbol)]); printy([merge_sort(symbol_definition)]); -- 

			-- Now go on to parse all the proof lines............; these lines are broken up into pairs
			-- [step_descriptor,formula], and the assembled list of pairs for all sections will be written to a file 
			-- 'digested_proof_file". This is a list of tuples of such pairs, each such tuple representing statements 
			-- of a proof broken up into a pair of strings [hint, body]; there is one such tuple for each hint in the scenario.
			-- We also begin to write out the "suppose_not_file", consisting of pairs 
			-- [statement_in_suppose_not,statement_in_theorem] used to check the correctness
			-- of the Suppose_not statements often used to open proofs by contradiction.

--	printy(["\nStarting proofs parse: ",time()]);
	num_checks := 0;
	
	digested_proofs := [];		-- will collect all the digested proofs
	suppose_not_handle := open(user_prefix + "suppose_not_file","TEXT-OUT");			-- open file used for suppose_not collection
	
	for pno = proof_sections(proofno) | pno > 0 loop		-- process all the proof sections; pno is the section number

		digested_proofs with:= (dpl := digest_proof_lines(pno));		-- break the proof lines into pairs [step_descriptor,formula]
		
		labeled_pieces := {};		-- will collect labeled pieces of statements to check for duplicate labels
		for hstat = dpl(k) loop	-- process the lines of the proof, parsing them and collecting all the "Suppose_not" pairs
 			
			if k = 1 then continue; end if;		-- ignore the theorem section number prefixed to the list of pairs
			
			[hint,stat] := hstat;		-- break pair into hint, statement
			
			if k = 2 and #hint >= 11 and hint(1..11) = "Suppose_not" then 		-- Special processing for the initial 'Suppose_not' statement in the proof

				hintvars := hint(12..); span(hintvars,"("); rspan(hintvars,")");
					 		-- drop the parentheses surrounding the list of variables in the hint
					 		
					 -- write a quadruple representing a theorem and its following 'Suppose_not' statement to the suppose_not_file
					 -- the first component of the triple is the list of variables to be substitued for the 
					 -- universally quantified variables of the theorem statement
				printa(suppose_not_handle,[hintvars,drop_labels(stat)(1),theorem_text(pno - 1),proofno]); 

			end if;  

			[clean_stat,lab_locs,labs] := drop_labels(stat);		-- take note of the labeled portions of the statement if any
			for lab = labs(j) loop 		-- use the auxiliary 'labeled_pieces' map built hear to check for duplicate labels
				if labeled_pieces(lab) /= OM then printy(["****** Error: label is duplicated --- ",lab," ",clean_stat(lab_locs(j)..)]); end if;
				labeled_pieces(lab) := csj := join(breakup(clean_stat(lab_locs(j)..),"&")," and ");
--print("csj: ",csj," ",parse_expr(csj + ";"));			
				if (pt := parse_expr(csj + ";")) = OM then 
					printy(["***** Syntactically illformed labeled statement portion in proof: ",dpl," ",csj]); 
					printy(["stopped due to: syntax error"]); was_syntax_error := true; return; 
				end if;
	
			end loop;
--print("<P>clean_stat: ",clean_stat);
			if proofno >= first_proof_to_check and proofno <= last_proof_to_check and (pt := pahrse_expr(clean_stat + ";")) = OM then 
				printy(["***** SYNTACTICALLY ILLFORMED STATEMENT in proof:<BR>\nStatement number is ",k - 1,"\n<BR>Statement is: \n<BR>",hint," ==> ",stat,
							"<BR>\n<BR>\n***** Statements in proof are:<BR>\n",
							join(["[" + kk + "] " + if x(1) = "" then str(x(2)) else join([str(y): y in x(1..#x - 1)]," ==> ") end if: x = dpl(2..)(kk)],"<BR>\n")]);
									-- in the preceding line, 'x(1..#x - 1)' drops an appended 0
				printy(["<BR>\nSTOPPED DUE TO SYNTAX ERROR; internal proofno and section number are: ",proofno," ",pno," raw form of hinted statement is: <BR>\n",hstat]); was_syntax_error := true; return; 
			end if;

			num_checks +:= 1;

		end loop;
--if proofno > 5 then printy(["\n",proofno,"\n",drop_labels(stat)(1)]); end if; if proofno > 10 then stop; end if;

--	if proofno mod 300 = 0 then printy(["Done: ",proofno]); end if; 	-- note progress of the operation
 
	end loop;

--	printy(["Done parse of all proof lines: ",time()," ",num_checks," proof steps checked syntactically"]);
		-- note conclusion of proof-lines parse and Suppose_not file writeout

	close(suppose_not_handle);			-- close file used for suppose_not collection
	
			-- ********** ********** ********** ********** ********** ********** ********** ********** ********** 
			-- Now prepare to write out the remaining files produced by this routine. These represent various of the maps
			-- that have just been collected. They are digested_proof_file,theorem_map_file,theory_data_file,
			-- and (a bit subsequently) definition_tup_file and theorem_sno_map_file.
			-- ********** ********** ********** ********** ********** ********** ********** ********** ********** 			

	digested_proof_handle := open(user_prefix + "digested_proof_file","TEXT-OUT");		-- first write out the digested proofs.....
	printa(digested_proof_handle,digested_proofs); close(digested_proof_handle);

	theorem_map := {};			-- will map theorem numbers, generally in the form 'Tnnn", into the corresponding formulae
	th_sno_map := {};			-- will map theorem numbers, generally in the form 'Tnnn", into the corresponding section numbers
								-- also has corresponding pairs for definitions and theories
	unnumbered_ctr := 0;		-- counter for theorems not specifically numbered
	
	for th_sno in theorem_sections loop 	-- process the theorem sections, building the theorem_map to be written out below

		if #(ttup := sections(th_sno)) = 1 then 		-- theorem consists of a single extended line

			stg := ttup(1); span(stg," \t"); match(stg,"Theorem"); span(stg," \t"); 	-- scan off the "Theorem" header
			tnum := break(stg,":");			-- get the actual theorem number
			span(stg," \t:"); 		-- past colon and whitespace

			if #stg > 1 and stg(1) = "[" then break(stg,"]"); match(stg,"]"); span(stg," \t"); end if;
						-- drop any prefixed comment in square brackets

			rspan(stg," \t."); rmatch(stg,"Proof+:"); rmatch(stg,"Proof:"); rspan(stg," \t.");
			 				-- drop the concluding 'Proof:', and any final period
			theorem_map with:= pair := [th_finding_key := if tnum = "" then "TU"+ str(unnumbered_ctr +:= 1) else "T" + tnum end if,stg];
			th_sno_map with:= [th_finding_key,th_sno];		-- record the theorem's section number in th_sno_map
--if parse_expr(stg + ";") = OM then printy(["Bad Theorem formula: ",stg]); stop; end if; printy([pair]);

		else 											-- theorem consists of two parts

			pref := ttup(1);			-- get prefix and following part
			stg := join(ttup(2..)," ");
			span(pref," \t"); match(pref,"Theorem"); span(pref," \t"); tnum := break(pref,":");			-- get the actual theorem number
			match(pref,":"); span(pref," \t");
			if #pref > 1 and pref(1) = "[" then break(pref,"]"); match(pref,"]"); span(pref," \t"); end if;
							-- drop any prefixed comment in square brackets
			stg := pref + " " + stg;				-- prepend remaining part of prefix to stg
			
			if #stg > 1 and stg(1) = "[" then break(stg,"]"); match(stg,"]"); span(stg," \t"); end if;
					-- drop any prefixed comment in square brackets

			rspan(stg," \t."); rmatch(stg,"Proof+:"); rmatch(stg,"Proof:"); rspan(stg," \t."); 				-- drop the concluding 'Proof:', and any final period
			theorem_map with:= (pair := [th_finding_key := if tnum = "" then "TU"+ str(unnumbered_ctr +:= 1) else "T" + tnum end if,stg]);
			th_sno_map with:= [th_finding_key,th_sno];		-- record the theorem's section number in th_sno_map
--if parse_expr(stg + ";") = OM then printy(["Bad Theorem formula:: ",stg]); stop; end if; printy([pair]);

		end if;

	end loop;			-- print the theorem sections

	--printy(["theorem sections: ",{[x,tmx]: x in domain(theorem_map) | #(tmx := theorem_map{x}) > 1}]); 
	
	check_theorem_map();			-- check that the theorem mapp is single_valued

	handle := open(user_prefix + "theorem_map_file","TEXT-OUT"); printa(handle,theorem_map); close(handle);
			-- write out the theorem_map_file, containing 'theorem_map'.....

	handle := open(user_prefix + "theory_data_file","TEXT-OUT");
	enter_secno_map := {p: p in enter_sections};enter_secno_map := {[x,enter_secno_map{x}]: x in domain(enter_secno_map)}; 
	printa(handle,[parent_of_theory,theors_defs_of_theory,assumps_and_consts_of_theory,enter_secno_map]); close(handle);

	-- 				************* DEFINITIONS PROCESSING *************

	-- Now we collect all the 'global' symbol definitions. These can have various sources: 

	-- (1) explicit definitions, which can be recursive
	-- (2) definitions by Skolemization of a statement in Prenex normal form

	-- (3) uses of the Theory mechanism, via 'APPLY'. The definition of functions originating in this way 
	-- is taken to  be the 'APPLY' text itself. Note that an 'APPLY' statement has the syntax 
	-- APPLY(new_symbol:defined_symbol_of_theory,...) theory_name(list_of_replacements_for_assumed_symbols),
	-- where the symbols being defined are the new_symbols that appear. The list_of_replacements_for_assumed_symbols
	-- has the syntax 

	--			func_or_pred__assumed_in_theory->replacement_expresssion-supplied,... 

	-- Each func_or_pred__assumed_in_theory must appear in the THEORY line heading the THEORY being applied,
	-- and must have the arity with which it is used in the THEORY.

	-- 'APPLY' statements can appear either in the body of a proof, or externally. In  the former case the symbols
	-- that they define are local to the proof in which they appear, in the second case they are global.

	-- THEORYs with empty defined_symbol_of_theory lists are possible, and are used as repositories 
	-- for frequently occuring proof strategies that do not require combinatorial search.
	
	-- Several theory checks resemble the checks performed during definition processing and must be performed
	-- in the same way. Introduction of a THEORY must precede any of its applications. Each item in the
	-- list_of_replacements_for_assumed_symbols supplied by an 'APPLY' is in effect a definition for the
	-- func_or_pred__assumed_in_theory appearing in it and must obey the rules for an ordinary algebraic definition.

	-- A THEORY can be entered repeatedly, to prove new theorems and make additional definitions. 

	-- 				****************************************************
					-- Build a map of all symbols defined explictly or by a theory application into the number of
					-- the section in which they are defined. 
					-- This will be used subsequently to check that all Use_defs and other symbol uses  
					-- follow the definition or APPLY which define them
	-- 				****************************************************

	for j in def_sections loop 
		
		ds := trim_front("" +/ sections(j));		-- get the definition or apply section
		
		if #ds >= 5 and ds(1..5) = "APPLY" then 			-- we have a definition by 'APPLY'
			null;			-- **************** FILL IN ****************
		else												-- we have an ordinary definition

			ds_pieces := segregate(ds,":=");		-- find the left/right separator of the definition
			if (not (exists piece = ds_pieces(ix) | piece = ":=")) or ix = 1 then
				printy(["\n****** Error: illformed definition: ",ds]); 
				error_count +:= 1; continue;
			end if;
							-- get the part of the definition before the assignment mark
			before := obefore := ds_pieces(ix - 1); rspan(before," \t"); span(before," \t"); 

		-- if this opens with a start-tuple bracket, then break off everything up to the following end-tuple-bracket
			if #before > 0 and before(1) = "[" then break(before,"]"); span(before," \t]"); end if;

																	-- if this is an infix-operator definition
			if #before > 4 and before(1..4) = "Def(" then 			-- have infix operator definition

				before := before(5..);		-- take everything on the left side of the definition following 'Def('
				rspan(before," \t)"); 		-- remove the enclosing parentheses and any whitespace
 
 				if #before > 1 then 

					break(before,"¥•@~#");   		-- remove everything up to the operator mark, e.g. '•' or '@'
					-- for the special case [x,y] we have before = [x,y]

					if #before > 0 and before(1) notin "¥•" then  		-- the operator mark is not '•'
						ma1 := any(before,"@~#");
						before := ma1; 								-- break it out as a single character
					elseif #before > 0 and before(1) = "[" then
						before := "[]";								-- enumerated tuple special case
					else  											-- but if the operator mark is '•'

						befront := breakup(before," \t")(1); 		-- take everything following the operator mark, 
																	-- up to the next whitespace, as the operator
						if before = "" then before := "[]"; else before := befront; end if; 

					end if;

				end if;
--printy(["before: ",before," ",obefore]);
			else							-- we have a definition of a constant or function symbol
				befront := break(before,"("); before := befront; span(before," \t"); span(before," \t");
							-- take part before open parenthesis and trim blanks
			end if;
			
			symb_referenced := 				-- convert the prefix characters of infix operators to 'name_' form and capitalize
					if before in {"range","domain","pow"} then case_change("ast_" + before,"lu")
					elseif  #before >= 1 and before(1) in "¥•" then "DOT_" + case_change(before(2..),"lu")	-- infixes
					elseif  #before >= 1 and before(1) = "~" then "TILDE_" +  case_change(before(2..),"lu")
					elseif  #before >= 1 and before(1) = "@" then "AT_" +  case_change(before(2..),"lu")
					elseif  #before >= 1 and before(1) = "#" then  case_change("ast_nelt","lu")
					elseif  before = "[]" then case_change("ast_enum_tup","lu")
					else case_change(before,"lu") end if;
--print("before: ",before," ",symb_referenced);			
			th_sno_map with:= ["D" + symb_referenced,j];			-- prefix the defined operator or function with a 'D', 
														-- and note the section number of the definition
			
		end if;
		
--		ds := "" +/ sections(j); span(ds,"\t "); 

--		if #ds >= 5 and ds(1..5) = "APPLY" then printy(["**** with following theorem: ","" +/ sections(j) + get_theorem_name("" +/ sections(j + 1))]);  end if;  
	end loop;					
		def_tuple := [[theory_of_section_no(j),(ds := trim_front("" +/ sections(j))) + if #ds >= 5 and ds(1..5) = "APPLY" then get_theorem_name("" +/ sections(j + 1)) else "" end if]: j in def_sections];
									-- Form the tuple of all definitions, with the theories to which they belong:
									-- Note that this includes global 'APPLY' statements, for which the hint, followed by the name of the deduced theorem
									-- (no space) is written out
									
	handle := open(user_prefix + "definition_tup_file","TEXT-OUT"); printa(handle,def_tuple); close(handle);
			-- write out the definition_tup_file, containing all definitions .....
	handle := open(user_prefix + "theorem_sno_map_file","TEXT-OUT"); printa(handle,th_sno_map); close(handle);
			-- write out the theorem_sno_map_file, mapping all theorems and definitions into their section numbers .....
	
	printy(["Done: ",time()," Files suppose_not_file, digested_proof_file, theorem_map_file, definition_tup_file were written with prefix ",user_prefix]);
			-- note conclusion of this whole syntax checking and file writeout operation

  end parse_file;

	--      ************* division of proof lines into 'hint' and 'body' portions ***************

	procedure digest_proof_lines(proof_sect_num); 		-- digests the proof lines into triples 

--		if (proof_sect_num - 1) in use_pr_by_str_set then print("detected use_pr_by_str_set case: ",use_pr_by_str_set," ",proof_sect_num); end if;		

		proof_sect_trips := [if (proof_sect_num - 1) in use_pr_by_str_set then -proof_sect_num else proof_sect_num end if]; cur_stg := cur_pref := "";			
				-- We collect triples [prefix,formula,marked_for_optimize] the formula may need to be collected 
				-- across several lines. But note that each proof is prefixed by its section number, which is made negative to indicate use_proof_by_structure 
--if proof_sect_num = 1124 then printy([sections(proof_sect_num)]); end if;				
		for line in sections(proof_sect_num) loop		-- iterate over the lines in the section

			for piece in breakup(line,";") loop		-- the lines are broken by ;'s if several inference statements are put on one line

				if (lb := loc_break(piece)) = OM then cur_stg +:= piece; continue; end if;
						-- loc_break finds location of the last character before the mark ==> or ===> in the string, if there is any such;
						-- this separates the hint from the formula of an inference line. If there is none such, OM is returned
								-- otherwise we collect the preceding pair and start a new one

				if cur_stg /= "" then 		-- remove surrounding whitespace and terminal dot
					span(cur_stg," \t"); rspan(cur_stg,". \t"); span(cur_pref," \t"); rspan(cur_pref,". \t"); 
					proof_sect_trips with:= [cur_pref,cur_stg,marked_for_optimize]; cur_stg := ""; 
				end if;

				marked_for_optimize := if lb >= 4 and piece(lb - 3..lb) = "===>" then 1 else 0 end if;
				cur_pref := piece(1..lb - (3 + marked_for_optimize)); cur_stg := piece(lb + 1..);
--if marked_for_optimize = 1 then print("<P>marked_for_optimize: ",line," ",cur_pref," ",cur_stg); end if;

			end loop;

		end loop;


		if cur_stg /= "" then 
			span(cur_stg," \t"); rspan(cur_stg,". \t"); span(cur_pref," \t"); rspan(cur_pref,". \t"); 
			proof_sect_trips with:= [cur_pref,cur_stg,marked_for_optimize]; cur_stg := ""; 
		end if;
		
		return proof_sect_trips;
		
	end digest_proof_lines;

					-- ******** Analysis of the text of theorems *******

	procedure theorem_text(sect_no);			-- gets stripped text of theorem

		stg := "" +/ sections(sect_no); thead := break(stg,":"); tcol := match(stg,":"); twhite := span(stg," \t");
		if #stg > 0 and stg(1) = "[" then tcom := break(stg,"]"); trb := match(stg,"]"); span(stg," \t"); end if;
		tpref := thead + tcol + twhite + (tcom?"") + (trb?""); 
		rspan(stg," \t"); rmatch(stg,"Proof+:"); rmatch(stg,"Proof:"); rspan(stg," \t.");

		 return stg; 
	end theorem_text;

					-- ******** Analysis of the text of definitions *******

	procedure definition_text(sect_no);								-- gets stripped text of definition

		stg := stg_copy := "" +/ sections(sect_no); 

		span(stg_copy," \t"); mayap := match(stg_copy,"APPLY");
		if mayap /= "" then rspan(stg," \t."); return mayap + stg; end if;
		
		thead := break(stg,":"); tcol := match(stg,":"); twhite := span(stg," \t");
		if #stg > 0 and stg(1) = "[" then tcom := break(stg,"]"); trb := match(stg,"]"); span(stg," \t"); end if;
		tpref := thead + tcol + twhite + (tcom?"") + (trb?""); 
		rspan(stg," \t.");

		return stg;

	end definition_text;

	--   !!!!!************* Collection and numbering of theory sections ***************!!!!!

	procedure take_section(now_in,current_section);			-- collects section
		-- this routine is called whenever a prior section is ended by the start of a new section. It collects 
		-- all the sections into an overall tuple called 'sections', and also (depending on their type) 
		-- collects their section numbers into auxiliary tuples called def_sections, theorem_sections,
		-- theory_sections, apply_sections, enter_sections, and proof_sections

		-- This routine also keeps track of incomplete or missing proofs

--print("take_section: ",sections," ",current_section);
		if current_section = [] or now_in = unused_section then  
--if ("" +/ current_section) /= "" then printy(["\nunused_section: ",current_section]); end if;
			return; 
		end if;
		
		sections with:= current_section; num_sections +:= 1;		-- put the section itself into the list of all sections
		theory_of_section_no(num_sections) := last_theory_entered;	-- note the theory to which this section belongs

				-- and now record the section number into a list of section indices of appropriate type
		if now_in = definition_section then 				-- collect a definition

			def_sections with:= num_sections;
			def_start := current_section(1); span(def_start,"\t "); def_name := break(def_start,":");
			theors_defs_of_theory(last_theory_entered) := (theors_defs_of_theory(last_theory_entered)?{}) with def_name;
			
			if dump_theorems_flag then 	-- dump definitions in this case
				full_def_statement := "" +/ current_section; 
				rspan(full_def_statement," \t");  
				full_def_copy := full_def_statement;
				front := break(full_def_copy,":"); mid := span(full_def_copy,": \t");
				
				if full_def_copy(1) = "[" then 			-- pull of the comment
					comment := break(full_def_copy,"]"); aft_comment := span(full_def_copy,"] \t");
--print("full_def_copy: ",full_def_copy);
					if (pe := parse_expr(full_def_copy + ";")) /= OM then 
						full_def_copy := front + mid + comment + aft_comment + unicode_unpahrse(pe);
					else 
						full_def_copy := full_def_statement;
					end if;
				elseif (pe := parse_expr(full_def_copy + ";")) /= OM then
					full_def_copy := front + mid + unicode_unpahrse(pe);
				else 
					full_def_copy := full_def_statement;
				end if;
				
				printa(dump_defs_handle,"(",theorem_count,") ",full_def_copy,"<P>"); 

			end if;

		elseif now_in = theorem_section then 				-- collect a theorem statement

			theorem_sections with:= last_thm_num := num_sections; 
			theorem_start := current_section(1); 
			
			if dump_theorems_flag then 	-- dump theorems in this case; use prettyprinted form if possible
			
				full_thm_statement := "" +/ current_section; 			-- assemble the full theorem statement
				rspan(full_thm_statement," \t"); rmatch(full_thm_statement,"Proof+:");  rmatch(full_thm_statement,"Proof:"); -- remove possible clutter
				rspan(full_thm_statement," \t."); 
				full_thm_copy := full_thm_statement;	-- break the theorem statement from its label, remove possible clutter again
				front := break(full_thm_copy,":"); mid := span(full_thm_copy,": \t");
				
				if full_thm_copy(1) = "[" then 			-- if the label has a comment then pull it off
					comment := break(full_thm_copy,"]"); aft_comment := span(full_thm_copy,"] \t");
--print("full_thm_copy: ",full_thm_copy);

					if (pe := parse_expr(full_thm_copy + ";")) /= OM then 		-- if it parses, then reassmeble it un unicode form

						save_running_on_server := running_on_server;	-- since the immediately following dump is always wanted int prettyprinted form
						running_on_server := true;						-- pretend for the moment that we are running on the server, even if not
						full_thm_copy := front + mid + comment + aft_comment + unicode_unpahrse(pe);
						running_on_server := save_running_on_server;	-- but drop the pretense immediately	

					else 		-- otherwise just use the theorem in its original form (in a wellformed scenario, this should never happen)

						full_thm_copy := full_thm_statement;
					end if;

				elseif (pe := parse_expr(full_thm_copy + ";")) /= OM then	-- handle the no-comment case similarly

					save_running_on_server := running_on_server;	-- since the immediately following dump is always wanted int prettyprinted form
					running_on_server := true;						-- pretend for the moment that we are running on the server, even if not
					full_thm_copy := front + mid + unicode_unpahrse(pe);
					running_on_server := save_running_on_server;	-- but drop the pretense immediately	

				else 
					full_thm_copy := full_thm_statement;
				end if;
				
				theorem_count +:= 1;		-- count the theorems as we go along
				num_to_show := if theorem_count > 1 and tpa_to_just_tp_num(theorem_count - 1) = (stc := tpa_to_just_tp_num(theorem_count)) then
										str(stc) + "+" else str(stc?1) end if;
				
				printa(dump_theorems_handle,"(",num_to_show,") ",full_thm_copy,"<P>"); 
						-- print the theorem in its prettyprinted form
				
				if not running_on_server then printa(dump_theorems_handle2,"(",num_to_show,") ",full_thm_statement,"<P>"); end if;
						-- also print the theorem in its plain form if running standalone

			end if;

			span(theorem_start,"\t "); theorem_name := break(theorem_start,":");
			match(theorem_name,"Theorem"); span(theorem_name,"\t "); rspan(theorem_name,"\t ");

			if theorem_name /= "" then 
				theors_defs_of_theory(last_theory_entered) := 
						(theors_defs_of_theory(last_theory_entered)?{}) with ("T" + theorem_name); 
			end if;
--printy(["theorem_name: ",theorem_name]);

		elseif now_in = proof_section then  				-- collect a proof 

			proof_sections with:= num_sections;			-- note that the current section is a proof section
			if not was_just_qed then incomplete_proofs with:= num_sections; end if; was_just_qed := false;
			if num_sections - 1 /= last_thm_num then printy(["lost proof: ",last_thm_num," ",num_sections," ",sections(last_thm_num..num_sections)]); end if;

		elseif now_in = theory_section then  				-- collect a theory declaration

			theory_sections with:= num_sections; 
			cur_sect := current_section(1);			-- get the header line of the theory section
			
			if dump_theorems_flag then 	-- dump theories in this case
				full_theory_statement := join(current_section,"<BR>"); 
				printa(dump_theories_handle,"(",theorem_count,") ",full_theory_statement,"<P>"); 
			end if;

			front := break(cur_sect,"["); cur_sect := front; 			-- break off possible trailing comment
--print(printy(["theory_section: ",current_section]);			
			match(cur_sect,"THEORY"); trailing_underbar := match(cur_sect,"_");			-- look for underbar indicating external theory name
			if trailing_underbar /= "" then external_theory_name := break(cur_sect,"\t "); end if;
			span(cur_sect,"\t "); 
			theory_name := break(cur_sect,"(\t "); span(cur_sect,"\t ("); 
			if trailing_underbar /= "" then theory_name := "_" + external_theory_name + "_" + theory_name; end if;
					-- if the theory is external, prefix its name with the name of the responsible prover
			rspan(cur_sect,"\t "); rmatch(cur_sect,")"); rspan(cur_sect,"\t "); 
			theory_params := split_at_bare_commas(cur_sect);
			parent_of_theory(theory_name) := last_theory_entered;
			assumps_and_consts_of_theory(theory_name) := [theory_params,[trim(line): line in current_section(2..#current_section - 1)]];
--printy(["theory_name: ",theory_name," ",assumps_and_consts_of_theory(theory_name)]);
--printy(["theory_section: ",current_section]);

		elseif now_in = enter_section then  				-- collect an ENTER statement

			cur_sect := current_section(1);
			match(cur_sect,"ENTER_THEORY"); span(cur_sect,"\t "); 
			last_theory_entered := break(cur_sect,"\t ");
--printy(["enter_section: ",last_theory_entered]);
			enter_sections with:= [last_theory_entered,num_sections]; 

		elseif now_in = apply_section then  				-- collect an 'APPLY' instance

			apply_sections with:= num_sections; -- we put the 'APPLY' itself into 'apply_sections'
			def_sections with:= num_sections; 	-- but also record it as a definition in the 'def_sections' list
												-- since it may define various symbols
--printy(["TAKING APPLY SECTION: ",current_section]);		
		end if;
		
	end take_section;

	--      ************* Enforcement of special Ref syntactic/semantic rules  ***************

	procedure tree_check(node); 	-- checks that there are no compound functions, enumerated tuples of length > 2,
									-- and unrestricted or improperly restricted iterators in setformers

--printy(["tree_check: ",node]);
		if is_string(node) then return true; end if;		-- case of bottom-level name; disallow null tuples
		if not is_tuple(node) then return false; end if;	-- armoring: monadic occurences of opperators like '&" expected to be binary
		
		[n1,n2,n3] := node;			-- break node into operands and operator: generally infix (but not always)
		if n1 = "ast_null" then return true; end if;
		
		case abbreviated_headers(n1)	-- 	handle all allowed nodes
			
			when "if" => return tree_check(n2) and tree_check(n3) and tree_check(node(4));		-- if expression

			when "and","or","==","=",":=","incs","incin","imp","+","*","-","in","notin","/=","/==","@" => 
				
				return tree_check(n2) and tree_check(n3);

			when "{-}","[]","itr","Etr" => return true and/ [tree_check(nj): nj in node(2..)];	-- enumerated set, list, iterator list

			when "[-]" => 	if #node > 3 then return false; end if;		-- triples and greater are disallowed 
				
				return if n3 = OM then tree_check(n2) else tree_check(n2) and tree_check(n3) end if;

			when "arb","not","pow","#","domain","range" => return tree_check(n2);

			when "EX","ALL" => 									 				-- existential and universal
			
				if not (tree_check(n2) and tree_check(n3)) then return false; end if;		-- check iterator and condition
				
				return true and/ [is_string(itr) or (It1 := itr(1)) = "ast_in" or It1 = "DOT_INCIN": itr in n2(2..)]; 

			when "{/}" =>	-- setformer, no expr; verify presence of restrictions in iterators
			
				if not (tree_check(n2) and tree_check(n3)) then return false; end if;		-- check iterator and condition
				
				return true and/ [(It1 := itr(1)) = "ast_in" or It1 = "DOT_INCIN": itr in n2(2..)]; 

			when "{}" =>	-- setformer; verify presence of restrictions in iterators

				if not (tree_check(n2) and tree_check(n3) and tree_check(node(4))) then return false; end if;		-- check iterator and condition
				
				return true and/ [(It1 := itr(1)) = "ast_in" or It1 = "DOT_INCIN": itr in n3(2..)]; 

			when "()" => return is_string(n2) and tree_check(n3);			
						-- rule out compound functions and predicates

			otherwise => return if n3 = OM then tree_check(n2) else tree_check(n2) and tree_check(n3) end if;
			
		end case;
		
	end tree_check;

	procedure get_theorem_name(stg); 			-- extracts theorem name from string
		span(stg," \t"); match(stg,"Theorem"); span(stg," \t");  name := break(stg,":"); return name;
	end get_theorem_name;

	procedure check_theorem_map(); 			-- check the syntax of all the theorems written to the theorem_map_file
		
		dup_theorems := {tn: tn in domain(theorem_map) | #theorem_map{tn} > 1};

		if dup_theorems /= {} then 
			printy(["\n******* ERROR: the following theorem names are duplicated: ",dup_theorems,"\n"]); 
			error_count +:= #dup_theorems;
			printy(["One version of each duplicated theorem will be used arbitrarily"]); 
			for tn in dup_theorems loop theorem_map(tn) := arb(theorem_map{tn}); end loop;
		end if;

	end check_theorem_map;

	--      ************* Interfaces to native SETL parser ***************
	
	procedure parze_expr(stg); 		-- preliminary printing/diagnosing parse
				-- echoes the line being parsed, and calls the standard parser
		printy(["\nparsing: ",stg]); 
		if paren_check(stg) and (ps := pahrse_expr(stg)) /= OM then printy([" OK"]); return ps; end if;
		printy(["\n",setl_num_errors()," ************* ERRORS"]); abort(setl_err_string(1));
	end parze_expr;
	
	procedure pahrse_expr(stg); 		-- parse with check of syntactic restrictions
				-- called initially in place of parse_expr, to enforce Ref syntactic rules.

		ps := parse_expr(stg);
--print("ps: ",abs(stg(3))," ",abs("•")," ",stg = "P •imp ((P •imp Q) •imp Q);"," ",ps); 
		if ps /= OM and tree_check(ps) then return ps; end if;
		printy(["\n",setl_num_errors()," ************* ERRORS"]); 
	end pahrse_expr;

			-- ******** Analysis of function and symbol arities - enforcement of arity rules (***incomplete***) *******
	
			-- It is intended that these routines should ensure that no symbol is used with multiple arities. They need to be completed
			-- in a manner reflecting the Ref convention that constant, function, and predicate names can have either THEORY-wise, global, or proof-local scope.
			
	procedure collect_fun_and_pred_arity(node,dno); 		-- collect the arity of functions and predicates (main entry)
		current_def := dno;
		collect_fun_and_pred_arity_in(node,[]);
	end collect_fun_and_pred_arity;

	procedure collect_fun_and_pred_arity_in(node,bound_vars); 		-- collect the arity of functions and predicates (workhorse)
																	-- also collects locations of symbol definitions

		if is_string(node) then if node notin bound_vars then null; end if; return; end if; 

		case (ah := abbreviated_headers(n1 := node(1))?n1)

			when "and","or","==","+","-","{-}","in","notin","/==","=","/=","[]","[-]","{.}","itr","Etr","inc","incin","imp","*","->","not","null" => -- ordinary operators

				for sn in node(2..) loop collect_fun_and_pred_arity_in(sn,bound_vars); end loop;

			when "arb","domain","range","@","#","incs","<","<=",">",">=","pow" => 							-- more ordinary operators

				for sn in node(2..) loop collect_fun_and_pred_arity_in(sn,bound_vars); end loop;

			when ":=" => 							-- definition operators
							-- if the symbol at the very left of a definition is 'def', it is being used to define an infix or prefix operator
				if (left_side := node(2))(2) = "DEF" then 

					if is_string(ls32 := left_side(3)(2)) then 

						arity_symbol with:= [ls32,0]; 
						if current_def /= 0 then symbol_definition with:= [ls32,current_def]; current_def := 0; end if; 
									-- collect the operator definition
						collect_fun_and_pred_arity_in(node(3),bound_vars); return;			-- process the right side of the definition and return

					else
			
						[op,a1,a2] := ls32; 		-- unpack
						arity_symbol with:= [op,if a2 = OM then 1 else 2 end if]; 
						if current_def /= 0 then symbol_definition with:= [op,current_def]; current_def := 0; end if;			-- collect the operator definition
						collect_fun_and_pred_arity_in(node(3),bound_vars); return;			-- process the right side of the definition and return

					end if;

				elseif is_string(left_side) then			-- definition of a constant object

					arity_symbol with:= [left_side,0]; 
					if current_def /= 0 then symbol_definition with:= [left_side,current_def]; current_def := 0; end if; return;			-- no arguments

				elseif (ahl := abbreviated_headers(left_side(1))) = "()" then								-- definition of a standard predicate or operator

					args := if is_string(n3 := left_side(3)) then [n3] else left_side(3)(2..) end if;
					arity_symbol with:= [ls2 := left_side(2),#args];		-- note the number of arguments
					if current_def /= 0 then symbol_definition with:= [ls2,current_def]; current_def := 0; end if;			-- collect the symbol definition

				elseif ahl in specials_1 then						-- special one-variable operator

					arity_symbol with:= [ahl,1];
					if current_def /= 0 then symbol_definition with:= [ahl,current_def]; current_def := 0; end if; return;

				else
					printy(["******* ",left_side]); return;
				end if;
				
				for sn in args loop collect_fun_and_pred_arity_in(sn,bound_vars); end loop;

			when "if" => 							-- if expression

				for sn in node(2..) loop collect_fun_and_pred_arity_in(sn,bound_vars); end loop;

			when "()" => 				-- this is the case of functional and predicate application; the second variable is a reserved symbol, not a set
				
				args := [arg := node(3)];			-- the single arg, or list of args
				nargs := if is_string(arg) then 1 else #(args := arg(2..)) end if; 
				arity_symbol with:= [n2 := node(2),nargs];			-- maps each defined symbol into its arity
--				if current_def /= 0 then symbol_definition with:= [n2,current_def]; current_def := 0; end if;			-- collect the symbol definition
				
				for sn in args loop collect_fun_and_pred_arity_in(sn,bound_vars); end loop;

			when "{}","{/}","EX","ALL" => bound_vars +:= find_bound_vars(node); 			-- setformer or quantifier; note the bound variables

				for sn in node(2..) loop collect_fun_and_pred_arity_in(sn,bound_vars); end loop;			-- now collect free variables as before

			otherwise => 
				is_dot := match(ah,"DOT_"); if is_dot /= "" then return; end if;			-- here we should process the arity of infix and prefix operators
				printy(["shouldn't happen collect_fun_an_pred_arity_in: ",ah," ",node]); 		-- shouldn't happen
		
		end case;
		
	end collect_fun_and_pred_arity_in;

					-- ******************************************************************
					-- ******** Input and checking of digested proofs - top level *******
					-- ******************************************************************

					-- ******* initial input of digested proof data ******* 
					
procedure read_proof_data();	-- ensure that the list of digested_proofs,   
								-- the theorem_map of theorem names to theorem statements,
								-- the theorem_sno_map_handle of theorem names to theorem statements,
								-- its inverse inverse_theorem_sno_map,
								-- the theory-related maps parent_of_theory,theors_defs_of_theory,assumps_and_consts_of_theory
								-- and the theory_of map sending each theorem and definition into its theory
								-- are all available
if was_syntax_error	then print("\n\nwas_syntax_error -- STOPPED\n\n"); stop; end if;		-- armoring				
	if digested_proof_handle = OM then			-- read the full tuple of digested proofs if they have not already been read
		init_logic_syntax_analysis();			-- obligatory initialization
		digested_proof_handle ?:= open(user_prefix + "digested_proof_file","TEXT-IN");
		reada(digested_proof_handle,digested_proofs); close(digested_proof_handle);
		printy(["number of digested proofs is: ",#digested_proofs]);
	end if;

	if theorem_map_handle = OM then			-- read the theorem_map if it has not already been read
		theorem_map_handle ?:= open(user_prefix + "theorem_map_file","TEXT-IN");
		reada(theorem_map_handle,theorem_map); close(theorem_map_handle);
		-- printy(["number of theorem_map entries is: ",#theorem_map]);
	end if;

	if theorem_sno_map_handle = OM then			-- read the theorem_sno_map if it has not already been read
		theorem_sno_map_handle ?:= open(user_prefix + "theorem_sno_map_file","TEXT-IN");
		reada(theorem_sno_map_handle,theorem_sno_map); close(theorem_sno_map_handle);
		inverse_theorem_sno_map := {[y,x]: [x,y] in theorem_sno_map}; 
	end if;

	if theory_data_handle = OM then			-- read the theory_data if it has not already been read

		theory_data_handle ?:= open(user_prefix + "theory_data_file","TEXT-IN");
		reada(theory_data_handle,theory_data); close(theory_data_handle);
		[parent_of_theory,theors_defs_of_theory,assumps_and_consts_of_theory,enter_secno_map] := theory_data;  
		
				-- form map of theorems and definitions into their theories
		theory_of := {[thm_or_def,theory]: [theory,th_def_set] in theors_defs_of_theory,thm_or_def in th_def_set};

	end if;
	
	theorem_list := [x: [-,x] in merge_sort(inverse_theorem_sno_map)];	-- list of theorem names in order				
	theorem_name_to_number := {[x,j]: x = theorem_list(j)};	-- map of theorem names to their numbers in theorem order				
	defs_of_theory := {};				-- maps each theory into the names of the definitions appearing in the theory
	defsymbs_of_theory := {}; 			-- maps each theory into the symbols defined in the theory
	defconsts_of_theory := {};			-- maps each theory into the parameterless symbols defined in the theory
	
end read_proof_data;

	--      ************* read-in of digested proof and theory-related files ***************
	
	-- subset of above reads, used when only digested_proofs and theory data are needed.
						
	procedure init_proofs_and_theories();
		-- ensures initialization of digested_proofs, parent_of_theory,theors_defs_of_theory,assumps_and_consts_of_theory
			
		if digested_proof_handle = OM then			-- read the full tuple of digested proofs if they have not already been read
			init_logic_syntax_analysis();			-- obligatory initialization
			digested_proof_handle ?:= open(user_prefix + "digested_proof_file","TEXT-IN");
			reada(digested_proof_handle,digested_proofs); close(digested_proof_handle);
			printy(["number of digested proofs is: ",#digested_proofs]);
		end if;

		if theory_data_handle = OM then			-- read the theory_data if it has not already been read
	
			theory_data_handle ?:= open(user_prefix + "theory_data_file","TEXT-IN");
			reada(theory_data_handle,theory_data); close(theory_data_handle);
			[parent_of_theory,theors_defs_of_theory,assumps_and_consts_of_theory,enter_secno_map] := theory_data;  
			
					-- form map of theorems and definitions into their theories
			theory_of := {[thm_or_def,theory]: [theory,th_def_set] in theors_defs_of_theory,thm_or_def in th_def_set};
	
		end if;
	
	end init_proofs_and_theories;
	
					-- ******* main external entry to proof checking ******* 
					
procedure check_proofs(list_of_proofs); 		-- check ELEM and discharge inferences in given range,
												-- by calling the single-proof verifier as often as necessary.

	check_definitions(1,1 max/ list_of_proofs);	
		-- read and check all the definitions that might be relevant to the proofs in question

	nelocs_total := ok_total := ndisch_total := ok_disch_total := 0;
--printy(["\n<br>checked definitions, starting read_proof_data: "]); 	
	read_proof_data();	-- ensure that the list of digested_proofs,   
								-- the theorem_map of theorem names to theorem statements,
								-- the theorem_sno_map_handle of theorem names to theorem statements,
								-- its inverse inverse_theorem_sno_map,
								-- the theory-related maps parent_of_theory,theors_defs_of_theory,assumps_and_consts_of_theory
								-- and the theory_of map sending each theorem and definition into its theory
								-- are all available
	
	prepare_theorem_templates();		-- convert the theorem_map into a map 'theorem_templates' of theorem names into pairs
--printy(["\n<br>read_proof_data, starting check of individual proofs: ",#list_of_proofs]); 

	for j = list_of_proofs(jix) loop  
		check_a_proof(j); 
	end loop;	-- call the single-proof verifier as often as necessary.	
	set_output_phase(1);									-- direct the following output to the main output file
--printy(["\n<br>checked proofs: ",list_of_proofs]); 
	printy(["<P>*********** Run Ended ********** total inference errors = ",total_err_count," total fully verified proofs = ",total_fully_verified_proofs," ",time()]);

end check_proofs;

	procedure prepare_theorem_templates();		-- convert the theorem_map into a map 'theorem_templates'
												-- of theorem names into pairs [set_of_freevs_theorem,parsed_thm]
				-- the aim of the family of procedures of which this is part is to detect all the theorems which might be cited to
				-- establish some conclusion in a proof. Let s_all be the set of function and constant names which occur in a theorem 
				-- (including its hypotheses) and let s be the set of function and constant names which occur in its conclusion.
				-- Then s_all must be included in the set of function and constant names which occur somewhere on the stack
				-- when it is set up to prove a desired conclusion (since otherwise there would be no way of proving 
				-- all the hypotheses of the theorem), and s must be included in the set of function and constant names which occur in
				-- the desired statement (since otherwise the desired statement could not result from the theorem conclusion by substitution).
				
			if theorem_templates /= OM then return; end if;		-- do operation just once
			theorem_templates := {};			-- otherwise initialize map 
			
			for theorem_cited = theorem_map(thm_tname) loop
					-- theorem_map is a map from external theorem names to the string forms of theorems;
					-- we convert all theorems to the 'theorem_templates' form
					
				theorem_cited := join(breakup(theorem_cited,"&")," and ");	-- replace ampersands with 'ands' in the theorem cited
				parsed_thm := parse_expr(theorem_cited + ";")(2);			-- parse the entire theorem; drop the 'list' prefix
				[freevs_theorem,funcs_all] := find_free_vars_and_fcns(parsed_thm);	-- get its free variables and all its functions and constants
				
						-- if the main operation is an implication, take only the conclusion
				
				if parsed_thm(1) = "DOT_IMP" then parsed_thm := parsed_thm(3); end if;
						-- if the main operation of the conclusion is now a conjuction, break it up into the list of its conjuncts
				[freevs_theorem,funcs_conclusion] := find_free_vars_and_fcns(parsed_thm);	-- get the functions and constants of the theorem conclusion
						
				list_of_conjuncts := [];			-- will collect

				while parsed_thm(1) = "ast_and" loop
					list_of_conjuncts with:= parsed_thm(2); parsed_thm := parsed_thm(3); 
				end loop;
				
				list_of_conjuncts with:= parsed_thm; 			-- capture the last conjunct
				
				theorem_templates(thm_tname) := [freevs_theorem,parsed_thm];
				
								-- maintain mapping of top symbols of conjuncts to name of theorem in which they appear
								-- this wwill be used to prune the search for theorems matching a gien conclusion
								
				for conjnct in list_of_conjuncts loop 
								-- convert function applications at top into their function names
					if (keyconj := conjnct(1)) = "ast_of" then keyconj := conjnct(2); end if;
					topsym_to_tname(keyconj) := (topsym_to_tname(keyconj)?{}) with thm_tname; 
				end loop;

if thm_tname = "T463c" then print("<P>freevs_theorem,parsed_thm: ",thm_tname,"<BR>",[freevs_theorem,funcs_conclusion,funcs_all]); end if; 

			end loop;
--print("<BR>domain topsym_to_tname: ",domain(topsym_to_tname)); print("<BR>",topsym_to_tname("FINITE"));
			
	end prepare_theorem_templates;


	--      ************* Master entry for checking inferences in a single proof ***************
	
	procedure check_a_proof(proofno);		-- read a given proof and check all its inferences 
		-- This routine iterates over the successive statements of a single proof, determining their type by examining the attached hint,
		-- and then decomposing the hint to determine what statement or theorem, or theory (if any) is to invoke, what substitutions
		-- are to be performed during any such invocation, and what preceding statements are to be used as the logical context of the 
		-- inference to be attempted. Once this preliminary analysis has been done, its results are generally assembled into a conjuction,
		-- which is passed to our standard MLSS decision algorithm for satisfiability checking. 

		-- We also enforce the condition that no variable used in a proof can be existentially instantiated more than once,
		
		-- This routine works in the following way to check 'Discharge' steps, which affect the proof context more seriously
		-- than the other kinds. The negative of the statement appearing in the last preceding 'Suppose' step is formed, 
		-- and added to the context open just before the 'Suppose'. Then the conclusion of the 'Discharge' must be an ELEM consequence 
		-- of the statements available in that context. ["Discharge", "QED"] steps require that 'false' be an ELEM consequence
		-- of statements available in that context, and that the context must have been opened by a "Suppose_not" at the very start of the proof.
		-- "Suppose_not" steps are to be checked separately, by verifying that they are INSTANCEs of the negative of the theorem being proved. 
		-- Note that theorem statements use a syntax not used elsewhere, in which capitalized free variable names are understood to be
		-- universally quantified (by a prefixed universal quantifier). 
		
		-- The context of an ELEM deduction can be constrained in a simple way by prefixing a prior statement label to the ELEM command, 
		-- as in (Stat_n)ELEM. If this is done, only the statements in the range back to the indicated statement will be used as context
		-- for blobbing. By appending a '*' to such a restriction clause one 'coarsens' the blobbing by forcing blobbing of functions that 
		-- the back-end extended MLSS routines might otherwise attempt to handle (see the global const 'unblobbed_functions' in the 
		-- 'logic_parser_globals package'). Likewise, by appending a '+' to such a restriction clause,
		-- one increases the time allowed for the work of the the MLSS routines, after which they abandon the inference currently being attempted.   
		
		error_count := 0;			-- initialize the accumulated error count for this proof, which will be reported
		step_time_list := step_kind_list := [];		-- start to collect lists of times and kinds for verification of steps in this proof
		
		hint_stat_tup := digested_proofs(proofno);		-- get the tuple of hints and statements for the current proof; this is a set of pairs, [hint,statement]

--print("proofno ********",proofno," ",hint_stat_tup); --if hint_stat_tup = OM then end if;

						-- separate out the section number of the theorem and use it to get the theorem id
		if hint_stat_tup = OM then 
			printy(["******* PROOF CHECK ABORTED: theorem number " + str(proofno) + " apparently out of range"]); 
			return;
		elseif inverse_theorem_sno_map = OM then 
			printy(["******* PROOF CHECK ABORTED:  since proof of theorem number " + str(proofno) + " does not have required form (possibly lacks 'Suppose-not')"]); 
			return;
		end if;
							-- detect the per-proof use_proof_by_structure flags
		use_proof_by_structure := false;			-- a negative prepended theorem section number is used as the proof_by_structure flag
		if (hst1 := hint_stat_tup(1)) < 0 then use_proof_by_structure := true; hst1 := -hst1; end if;

		theorem_id := inverse_theorem_sno_map(theorem_section_number := hst1 - 1);
		theory_of_this_proof := theory_of(theorem_id);			-- get the theory to which this proof belongs
--printy(["theory_of_this_proof: ",theory_of_this_proof," ",theorem_id]); 
--printy(["check_a_proof:: ",proofno]); 		 
		hint_stat_tup := hint_stat_tup(2..);				-- bypass the prefixed theorem identifier
															-- e.g. ["Use_Def(C_0)", "m /= [R_0,R_0]"], ["ELEM", "not(car(m) = R_0 & cdr(m) = R_0)"]

		if hint_stat_tup = OM then return; end if;		-- don't try nonexistent cases
--printy(["hint_stat_tup: ",hint_stat_tup]); stop;		
 		set_output_phase(2);	-- begin second output phase
 		printy(["\n+++++++++++ starting verifications for: ",theorem_id,"#",current_proofno := proofno," -- ",verif_start_time := opcode_count()/oc_per_ms]);
 							-- note that group of verifications is starting
		number_of_statement_theorem := proofno;				-- record proofno for later diagnostic

--printy(["suppose_not_map: ",proofno," ",suppose_not_map(proofno)]); 
		negated_theorem := check_suppose_not(suppose_not_map(proofno),proofno,theorem_id); 
				-- check the suppose_not_lines entry, for this proof; OM is returned if the suppose_not is not AUTO
--printy(["<P>check_suppose_not return: ",negated_theorem?"undef"]); 
		elem_inf_locs := [j: [hint,stat] = hint_stat_tup(j) | #hint >= 4 and hint(#hint - 3..) = "ELEM"];	-- find the ELEM statements in the current proof
		suppose_locs := [j: [hint,stat] = hint_stat_tup(j) | #hint >= 7 and hint(1..7) = "Suppose"];		-- find the Suppose statements in the current proof
		discharge_locs := [j: [hint,stat] = hint_stat_tup(j) | #hint >= 9 and hint(1..9) = "Discharge"];	-- find the Discharge statements in the current proof
		
		nelocs_total +:= (nelocs := #elem_inf_locs);		-- get the counts of these significant locations
		ndisch_total +:= (ndlocs := #discharge_locs);
		nslocs := #suppose_locs;
		ok_counts := ok_discharges := 0;	 	-- to get total OKs in ELEM and discharge inferences 
												-- we will count the number of successsful verifications
		count := 0;								-- count of number of theorem citations
--printy(["lists of theorem sections: ",elem_inf_locs,suppose_locs,discharge_locs]); stop;
					-- rebuild the 'labeled_pieces' map of statement-piece labels to statement pieces (already examined during parse)

		labeled_pieces := {}; 		-- 'labeled_pieces' maps each the label of eeach labeled conjunct of a theorem into the string form of that conjunct

		for [hint,stat] = hint_stat_tup(kk) loop					-- iterate over the lines of the proof
						
			[clean_stat,lab_locs,labs] := drop_labels(stat);		-- take note of the labeled portions of the statement if any
			for lab = labs(j) loop									-- iterate over all the conjunct labels in the statement
				rspan(lab," \t:"); 									-- clean the label by dropping terminal ':' and whitespace
				labeled_pieces(lab) := csj := clean_stat(lab_locs(j)..);		-- map the label into the immediately following clause
			end loop;

		end loop;
--printy(["<P>labeled_pieces: ",labeled_pieces," ",lab_locs]); stop;

		relev_hint_stat_tup := [];									-- for checking existentially instantiated variables for duplicates
		statement_stack := []; context_start_stack := [];			-- statement_stack will be a stack of the statements not yet discharged
		step_start_time := opcode_count()/ oc_per_ms;				-- note start time for verification of first step of this proof
--printy(["starting iteration over statements of proof"]); 
		for [hint,stat,op_mark] = hint_stat_tup(j) loop 		-- iterate over the hint, stat, optimization_mark triples of the current proof, 
																		-- determining their kind
--print("<P>[hint,stat,op_mark] ",j," ",[hint,stat,op_mark]); if j > 7 then print("<P>check_a_proof lab_locs loop: ",proofno); end if;

			is_auto := false;											-- assume that the statement being processed is not an 'auto' case
			
			optimization_mark := (op_mark = 1);							-- convert 1/0 to boolean
			if optimization_mark then optimize_whole_theorem := false; end if;
								-- optimization mark on statement subsequent to initial 'Suppose_not' end optimization-by-default
--print("<BR>optimization_mark: ",optimization_mark," ",op_mark?"UNDEF"," ",optimize_whole_theorem," ",stat);
--print(["<BR>[hint,stat]: ",[hint,stat]]);

			statement_being_tested := hint + " ==> " + stat;			-- keep track of the statement being tested
			number_of_statement := j;									-- to report verification errors
			number_of_statement_theorem := theorem_id;					-- to report verification errors
			name_of_statement_theorem := "??????";						-- to report verification errors
			
			step_time_list with:= ((ntime := opcode_count()/ oc_per_ms) - step_start_time);
								-- note the time required for verifying the immediately preceding step
			step_kind_list with:= step_kind;				-- note the kind of the step
			step_start_time := ntime;									-- update the starting time
			
			match(hint,"Proof+:"); match(hint,"Proof:"); span(hint," \t");		-- remove whitespace and possible "Proof:" prefix from hint
	
			squash_details := try_harder := false; 	-- determine whether special function info, as for 'car', is to be retained in inference
					 
			hbup := breakup(hint,">"); --if #hbup = 1 then continue; end if;		-- since there is no '>'
							
							-- first check for inferences with parameters, which begin with --> or with (...) -->
			if exists piece = hbup(k) | #piece >= 2 and piece(#piece - 1..) = "--" and #(hbup(k + 1)?"") > 1 then
										-- we have an inference with parameters: note  that 'piece' has become  
										-- everything preceding the '>' in '-->' 
			 	hbk := hbup(k + 1);	span(hbk,"\t ");			-- hbk is the rest of the hint, remove initial whitespace
				if hbk = "" then hbk := " "; end if;

									--  check for '--> T'
				if hbk(1) = "T" then 		-- we have a theorem citation
				
					step_kind := "T";			-- note that step is theorem citation
	
					statement_stack with:= stat; 		-- always keep the result of this statement
					if disable_tsubst then continue; end if; 
	
					count +:= 1;  -- count  the number of citations
		
--print("<P>optimization_mark before1: ",optimization_mark?"UNDEFINED"); if optimization_mark notin {true,false} then stop; end if;
--print("<P>labeled_pieces: ",labeled_pieces);
					check_a_tsubst_inf(count,theorem_id,statement_stack,hbk,piece,j);		-- check a single tsubst inference
						 							-- ***** optimization code is contained in check_a_tsubst_inf routine

					if is_auto then 				-- in the 'AUTO' case, just replace the stack top with the generated statement
						statement_stack(#statement_stack) := auto_gen_stat;
					end if;

						  -- check for '--> S'
				elseif hbk(1) = "S" then  			-- we have a statement citation
				
					step_kind := "S";			-- note that step is statement citation
					
					statement_stack with:= stat; 		-- always keep the result of this statement
					if disable_citation then continue; end if; 
	
					span(hbk," \t"); rspan(hbk," \t");			--  remove leading and trailing whitespace
					[hbk,restr] := breakup(hbk,"()");			-- break out restriction clause if any

					if (statement_cited := labeled_pieces(hbk)) = OM then 			-- make sure that the reference is valid
						printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nCitation of missing labeled statement"]);
						error_count +:= 1; continue;
					end if;
	
					relev_hint_stat_tup with:= ["Stat_subst",hint,statement_cited];			-- might define a variable
	
					check_a_citation_inf(count,statement_cited,statement_stack,hbk,restr,piece,j);
									-- check a single statement citation inference
--print("<P>auto_gen_stat: ",auto_gen_stat?"undef");					 		-- ***** optimization code is contained in check_a_citation_inf routine

					if is_auto then 				-- in the 'AUTO' case, just replace the stack top with the generated statement
						statement_stack(#statement_stack) := auto_gen_stat;
					end if;

				end if;
			
			elseif #hint >= 4 and hint(#hint - 3..) = "ELEM" then			-- we have an ELEM deduction
 
 				step_kind := "E";			-- note that step is 'ELEM'
 				
								-- otherwise our standard MLSS-based procedure must be used
 				statement_stack with:= stat; 							-- stack the result of the deduction (of course, not to be used in its own deduction)
				if disable_elem then continue; end if;
																		-- note that the stacked statements still carry their labels 
				parsed_stat := parse_expr(drop_labels(stat)(1) + ";")(2);
--printy(["testing: ",stat," "]);

				if (ccv := compute_check(parsed_stat)) = true then		-- try proof by computation as a preliminary, using just the current statement as input 
--printy(["theorem established using proof by contradiction: ",stat]);
					ok_counts +:= 1; ok_total +:= 1;	 					-- count the number of successful verifications
					tested_ok := true;		-- note that this was correctly handled
					continue;			-- done with this statement
				end if;

						-- but if fast proof by computation doesn't work, use the standard blobbing test procedure.
				conj := form_elem_conj(hint,statement_stack);			-- build conjunction to use in ELEM-type deductions

				if show_details then printy(["\nconj: ",conj]); end if;
				test_conj(conj);		-- test this conjunct for satisfiability

				if not tested_ok then error_count +:= 1; continue; end if;
						
													-- ******** try automated optimization of context ********
				if optimization_mark or optimize_whole_theorem then 			-- optimization is desired
--print("<BR>ELEM statement_stack: "); for stat in statement_stack loop print("<BR>",stat); end loop;
					save_optimizing_now := optimizing_now; optimizing_now := true;			-- set optimization flag to suppress diagnosis;
					print("<BR>The lines of context required for proof of line ",j," ",search_for_all(statement_stack)," line is: ",hint," ==> ",stat);
					--print(" Optimized pure inference time for this inference step is: ",best_time_so_far);
					optimizing_now := save_optimizing_now;									-- restore optimization flag
				end if;
				
			elseif #hint >= 7 and hint(1..7) = "Suppose" then 			-- a context is opening
 
 				step_kind := if j = 1 then "N" else "U" end if;			-- note that step kind is "Suppose"
				if j = 1 then optimize_whole_theorem := optimization_mark; end if;			-- optimization mark on 'Suppose_not' marks the whole theorem
				
				relev_hint_stat_tup with:= [if #hint >= 11 and hint(1..11) = "Suppose_not" then "Suppose_not" else "Suppose" end if,hint,stat];
									-- might define a variable sneakily

				context_start_stack with:= #statement_stack;			-- note the last statement before the new context
				statement_stack with:= if j = 1 then negated_theorem?stat else stat end if;
								-- stack the first statement of the new context, or the expanded AUTO if this has occured in a Suppose_not

 				if negated_theorem /= OM and ":" in stat then 		-- we have an AUTO case. If the Suppose_not conclusion is labeled, 
 																	-- the negated theorem must replace the AUTO  in the 'labeled_pieces' map.
 																	
					rspan(stat," \t"); rmatch(stat,"AUTO"); rspan(stat," \t:"); span(stat," \t"); 
					labeled_pieces(stat) := negated_theorem;		-- the negated theorem replaces AUTO  in the 'labeled_pieces' map
--print("<P>AUTO case: ",stat," ",negated_theorem);
 				end if;
 				
 				if disable_discharge then continue; end if; 
			
			elseif #hint >= 9 and hint(#hint - 8..) = "Discharge" then 		-- a context is closing

 				step_kind := "D";			-- note that step kind is "Discharge"

				if context_start_stack = [] then 
					print("<BR>Discharge without start *** ",elem_inf_locs," ",suppose_locs," ",discharge_locs," ",hint_stat_tup); 
					print("<BR>stopped due to: syntax error");  was_syntax_error := true; stop; 
				end if;

				last_prior_start_m1 from context_start_stack;			-- get the last statement position before the context being closed

				if show_details then printy(["\nstatement_stack at discharge: ",statement_stack]); end if;

--print("<P>about to check discharge: ",hint," ",stat);
				if (not disable_discharge) and check_discharge(statement_stack,last_prior_start_m1,stat,j,hint) then		-- check the discharge operation
						 							-- ***** optimization code (two units) is contained in check_a_tsubst_inf routine
					ok_discharges +:= 1;		-- otherwise report on failed discharge 
				end if;			-- but always treat the discharge as if it succeeded, to try to  diagnose later situations
								
								-- the statements dropped by the discharge must also be dropped from the 'labeled_pieces' map,
								-- so that they cannot be cited subsequently
								
				stack_part_dropped := statement_stack(last_prior_start_m1 + 1 ..);			-- note the range of statements dropped by the discharge
				for stat_dropped in stack_part_dropped loop
					[-,-,labs] := drop_labels(stat);					-- find the labels in the statement
					for each_lab in labs loop labeled_pieces(each_lab) := OM; end loop;		-- drop the labled pieces that are discharged
				end loop;

--print("<P>stack_part_dropped: ",stack_part_dropped);				
				statement_stack := statement_stack(1..last_prior_start_m1);			-- remove all later statements
				
				if is_auto then		-- this was an AUTO case; use the AUTO_generated statemeng
					statement_stack with:= auto_gen_stat;
--print("AUTO case: ",statement_stack);
				else				-- not an auto generated case; use the statement from the AUTO
					statement_stack with:= stat; 							-- stack the result of the discharge
				end if;
				
			elseif #hint > 0 and hint(1) = "T" then			-- theorem quotation with no citation
						-- Note: if this defines a variable sneakily it must be in error 

 				step_kind := "Q";			-- note that step kind is "quotation"
						
				statement_stack with:= stat; 		-- always keep the result of this statement
				if disable_tsubst then continue; end if; 

				count +:= 1;  -- count  the number of citations

--print("<P>optimization_mark before2: ",optimization_mark?"UNDEFINED"); if optimization_mark notin {true,false} then stop; end if;
--print("<P>labeled_pieces:: ",labeled_pieces);
				check_a_tsubst_inf(count,theorem_id,statement_stack,hint,"",j);		-- check a single tsubst inference
						 							-- ***** optimization code is contained in check_a_tsubst_inf routine

			elseif (#hint >= 9 and hint(1..9) = "Set_monot") or (#hint >= 10 and hint(1..10) = "Pred_monot") then 

 				step_kind := "M";			-- note that step kind is "Set_monot"
	
				statement_stack with:= stat; 		-- always keep the result of this statement
				if disable_monot then continue; end if; 

				check_a_monot_inf(count,statement_stack,hint(10..),theorem_id);	-- check a single Set_monot/Pred_monot inference

				if tested_ok and (optimization_mark or optimize_whole_theorem) then 			-- ******** optimization is desired ******** 
		
					save_optimizing_now := optimizing_now; optimizing_now := true;			-- set optimization flag to suppress diagnosis;
					print("<BR>Lines of context required for proof of Set/pred_monot statement ",j," namely ",
						statement_stack(#statement_stack)," are ",search_for_all(statement_stack));
					--print(" Optimized pure inference time for this inference step is: ",best_time_so_far);
					optimizing_now := save_optimizing_now;									-- restore optimization flag
					
				end if; 

			elseif #hint >= 7 and hint(1..7) = "ALGEBRA" then 				-- algebraic inference

 				step_kind := "A";			-- note that step kind is "ALGEBRA"

				statement_stack with:= stat; 		-- always keep the result of this statement
				if disable_algebra then continue; end if;   

				rspan(hint,"\t ");				-- remove possible whitespace
				restr := if (hint_tail := hint(8..)) = "" then "" else hint_tail + "ELEM" end if;

				conj := form_elem_conj(restr,statement_stack);			-- build conjunction to use in ELEM-type deductions
							-- the hint passed should either be an empty string or have the form appropriate to "ELEM", namely (Stat..,Stat..,..)ELEM				

				check_an_algebra_inf(conj,[stat]);			-- handle this  single algebraic inference; make tuple to signal that on server

				if tested_ok and (optimization_mark or optimize_whole_theorem) then 			-- ******** optimization is desired ******** 
		
					save_optimizing_now := optimizing_now; optimizing_now := true;			-- set optimization flag to suppress diagnosis;
					print("<BR>The lines of context required for proof of algebra statement ",j," namely ",
						statement_stack(#statement_stack)," are ",search_for_all(statement_stack));
					--print(" Optimized pure inference time for this inference step is: ",best_time_so_far);
					optimizing_now := save_optimizing_now;									-- restore optimization flag
					
				end if; 

			elseif #hint >= 5 and hint(1..5) = "APPLY" then 				-- theory application inference

 				step_kind := "L";			-- note that step kind is "APPLY"

				statement_stack with:= stat; 		-- always keep the result of this statement
				if disable_apply then continue; end if;   

				[theory_name,apply_params,apply_outputs] := decompose_apply_hint(hint)?[]; 
					-- the split_apply_params is a list of pairs [assumed_fcn(vars),replacement_expn]
					-- the apply_outputs is the colon-and-comma punctuated string defining the functions to be generated

				relev_hint_stat_tup with:= ["APPLY",apply_outputs,stat];			-- might define one or more variables
				
				if theory_name = OM then 
					printy(["********** Error - llformed APPLY statement. Hint is: ",hint]); continue;
				end if;										-- done with this APPLY case
				
--printy(["APPLY: ",stat," ",[theory_name,apply_params,apply_outputs]]); 
				
				if theory_name = "Skolem" then 
					if check_a_skolem_inf_inproof(statement_stack,theory_name,apply_params,apply_outputs) = OM then	
						printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,"\nSkolem inference failed"]);
						error_count +:= 1;
					end if;
					continue;				-- done with this APPLY case
				end if;

--print("check_an_apply_inf_inproof: [theory_name,apply_params,apply_outputs]: ",[theory_name,apply_params,apply_outputs]);
				if check_an_apply_inf_inproof(theorem_id,statement_stack,theory_name,apply_params,apply_outputs) = OM then
					printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nApply inference using ",theory_name," failed."] + extra_message?[" Sorry."]); 
					error_count +:= 1;
				end if;
								-- handle this  single apply inference
																-- ******** optimization code needs to be supplied for this case ******** 				

						  							-- check for '--> Assump'
			elseif #hint >= 6 and hint(1..6) = "Assump" then  				-- inference by theory assumption

 				step_kind := "P";			-- note that step kind is "Assump"

				statement_stack with:= stat; 		-- always keep the result of this statement
				if disable_assump then continue; end if; 			

				rspan(hint,"\t ");				-- remove possible whitespace
				restr := if (hint_tail := hint(6..)) = "" then "" else hint_tail + "ELEM" end if;
				conj := form_elem_conj(restr,statement_stack);			-- build conjunction to use in ELEM-type deductions
							-- the hint passed should either be an empty string or have the form appropriate to "ELEM", namely (Stat..,Stat..,..)ELEM				
				check_an_assump_inf(conj,stat,theorem_id);			-- handle this  single assumption inference
									-- ******** no optimization code needed for this case, since inference is immediate ******** 				

			elseif #hint >= 6 and hint(1..6) = "SIMPLF" then  				-- inference by set-theoretic simplification

 				step_kind := "F";			-- note that step kind is "SIMPLF"

				statement_stack with:= stat; 		-- always keep the result of this statement
				if disable_simplf then continue; end if; 			
				ohint := hint;				-- keep the original hint
				
				rspan(hint,"\t ");				-- remove possible whitespace
				restr := if (hint_tail := hint(7..)) = "" then "" else "ELEM" + hint_tail end if;
							-- the hint passed should either be an empty string or have the form appropriate to "ELEM", namely (Stat..,Stat..,..)ELEM				
				check_a_simplf_inf(statement_stack,stat,j,ohint,restr);			-- handle this  single simplification inference
						 							-- ***** optimization code is contained in check_a_simplf_inf routine

			elseif #hint >= 7 and hint(1..7) = "Loc_def" then 

 				step_kind := "O";			-- note that step kind is "Loc_def"

				relev_hint_stat_tup with:= ["Loc_def",hint,stat];			-- always defines a variable

				statement_stack with:= stat; 		-- always keep the result of this statement
				if disable_loc_def then continue; end if; 

				check_a_loc_def(statement_stack,theorem_id);	-- check a single Loc_def inference
									-- ******** no optimization code needed for this case, since inference is immediate ******** 				

			elseif #hint >= 5 and hint(1..5) = "EQUAL" then 	-- check an 'EQUAL' inference

 				step_kind := "=";			-- note that step kind is "EQUAL"

				statement_stack with:= stat; 		-- always keep the result of this statement
				if disable_equal then continue; end if; 
			
				rspan(hint,"\t ");				-- remove possible whitespace 
				restr := if (hint_tail := hint(6..)) = "" then "" else hint_tail + "ELEM" end if;
				conj := form_elem_conj(restr,statement_stack);			-- build conjunction to use in ELEM-type deductions
							-- the hint passed should either be an empty string or have the form appropriate to "ELEM", namely (Stat..,Stat..,..)ELEM				
				check_an_equals_inf(conj,stat,statement_stack,hint,j);			-- handle this  single equality inference
						 							-- ***** optimization code is contained in check_an_equals_inf routine
				
			elseif #hint >= 9 and hint(1..8) = "Use_def(" then 	-- check a 'Use_def' inference
				-- recursive definitions are treated in a special, limited way. if the definition 
				-- involved in a Use_ef inference is seen to be recursive, then the conclusion 
				-- of the inference should be a conjunction of terms of the form f(arg..) = right_side (or P(arg..) •eq right_side),
				-- where f (resp. P) is the symbol defined. In this case the args are collected and substituted into the right-hand
				-- side of the definition, and this must give the right-hand side of the corresponding term of the conclusion.

 				step_kind := "Z";			-- note that step kind is "Use_def"

				orig_stat := stat;											-- keep copy of statement
				rspan(stat," \t"); auto_tag := rmatch(stat,"AUTO");			-- determine if this is an AUTO case

				if auto_tag /= "" then			-- this is an AUTO case
					-- in AUTO cases, the hint can have one of 4 forms:
					-- Use_def(symbol)
					-- Use_def(symbol-->Statnnn)
					-- Use_def(symbol(p_1,...,p_k))
					-- Use_def(symbol(p_1,...,p_k)-->Statnnn)
					
					rspan(stat," \t:"); span(stat," \t");	-- 'stat' is now the label attached to the AUTO, or the nullstring if none

					[symb_referenced,arglist,stat_label] := decompose_ud_auto_hint(hint);		-- the arglist list may be []
						-- the 4 cases listed above correspond to arglist =/= [] and stat_label =/= OM.
					
					parsed_args := [];				-- will collect

					if exists arg = arglist(k) | (parsed_args(k) := parse_expr(arg + ";")) = OM then			-- arg list is bad, so issue diagnostic and quit
						printy(["\n****** Error verifying step: ",j,", namely ",hint," ==> ",orig_stat,"\nsyntactically illformed parameter ",
											k,"\nin Use_def parameter list"]);
						continue;			-- done with this case
					end if;

--print("<P>auto_tag: ",auto_tag," ",hint," ",[symb_referenced,arglist,stat_label]); 				
					if (def_of_symbol := get_def_of_symbol(symb_referenced,theorem_id)) = OM then 
						printy(["\n****** Error verifying step: ",j,", namely ",hint," ==> ",orig_stat,
								"\ncannot find definition of symbol ",symb_referenced,"\nbypassing statement "]); stop;
						continue;			-- done with this case
					end if;
								-- diagnostic will have been issued within 'get_def_of_symbol'
		
					[def_vars,def_body] := def_of_symbol;			-- get the list of definition arguments and the parsed definition right side

					if #parsed_args /= #def_vars then
						printy(["\n****** Error verifying step: ",j,", namely ",hint," ==> ",orig_stat,
								"\nmismatch between number of parameters supplied in Use_def and number of parameters in definition argument list,\nwhich is ",
											def_vars]);
						continue;			-- done with this case
					end if;
					
					def_op := if apparently_pred(def_body) then "DOT_EQ" else "ast_eq" end if;		-- is this a predicate or a function definition?
					defleft := left_of_def_found?["ast_of",symb_referenced,["ast_list"] + def_vars];		-- use special lefts for DEF cases
								-- this is passed as a global from 'get_symbol_def' procedure
					
					subst_map := {[vj,parsed_args(j)]: vj = def_vars(j)};		-- map of definition variables to their replacements
					reconstructed_def := [def_op,defleft,def_body]; 			-- the definition as an equality or equivalence
					substituted_def := unparse(substitute(reconstructed_def,subst_map));
					statement_stack with:= (stat + " " + substituted_def); 		-- the substituted definition is the conclusion of the AUTO Use_def

--print("<P>substituted_def AUTO case: ",substituted_def," ",stat," ",labeled_pieces); 
					
					if stat /= "" then 				-- if the AUTO is labeled, we must update 'labeled_pieces' to show the substituted_def
						labeled_pieces(stat) := substituted_def;
					end if;
					
					continue;		-- done with this case (AUTO case)

				end if;			-- end if auto_tag /= "" (AUTO case)
				
				statement_stack with:= stat; 		-- always keep the result of this statement
				if disable_use_def then continue; end if;

				check_a_use_def(statement_stack,stat,theorem_id,hint,j);	-- check a single Use_def inference
						 							-- ***** optimization code is contained in check_a_use_def routine
						 							-- Note: uses of recursive definitions are not optimized

			else 						-- 'unexpected' inference operation; just stack the claimed result
 				printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nUnknown inference mode encountered"]); 
 				error_count +:= 1;
				statement_stack with:= stat; 
			end if;

		end loop;
 --printy(["<BR>check_a_proof done iteration over the lines of the proof: ",proofno]); 
		
						-- record the time for the final step
		step_time_list with:= ((ntime := opcode_count()/ oc_per_ms) - step_start_time);	-- collect time for last step
		step_kind_list with:= step_kind;		-- collect step_kind for last step
		
						-- check that the proof doesn't redefine variables already defined in its eveloping theory

		lovd := list_of_vars_defined(theory_of_this_proof,relev_hint_stat_tup);		-- get the list of variables defined locally in this proof
--printy(["lovd: ",lovd]);
		noccs := {};

		for x in lovd loop noccs(x) := (noccs(x)?0) + 1; end loop;

		if (multip_def := {x: x in domain(noccs) | noccs(x) > 1}) /= {} then
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nexistentially instantiated variables reused in proof: ",multip_def]);
			printy(["Sequence of variables existentially defined is: ",lovd]); 
			error_count +:= 1;
		end if;
		
						-- ***** display a sucess or failure report for the proof  *****
		if error_count > 0 then 
			printy([" NOKtime: ",opcode_count()/oc_per_ms - verif_start_time,step_time_list(2..),step_kind_list]);
						-- drop the dummy initial time; signal error
			printy(["****** ",error_count," inference errors in this proof ****\n"]); 
			total_err_count +:= error_count;
		else 
			printy([" OKtime: ",opcode_count()/oc_per_ms - verif_start_time,step_time_list(2..),step_kind_list]);
							-- drop the dummy initial time
			total_fully_verified_proofs +:= 1;
		end if;
		ok_disch_total +:= ok_discharges;		-- total the number of  discharges correctly handled
 --printy(["<BR>check_a_proof return: ",proofno]); stop;
		
	end check_a_proof;

	--      ************* conjunction building for inference checking ***************
				
		-- The following procedure prepares for invocation of our back-end satisfiability routines by transorming the stacked
		-- (and possibly restricted) collection of prior statemnts forming the context of a desired conclusion into a conjunction
		-- suitable for submission to those routines. 
 	
 	procedure form_elem_conj(hint,statement_stack);			-- build conjunction to use in ELEM-type deductions
 				-- the hint passed should either be an empty string or have the form appropriate to "ELEM", namely (Stat..,Stat..,..)ELEM
		return form_ed_conj(true,"ELEM",hint,statement_stack);
	end form_elem_conj;
 	
 	procedure form_discharge_conj(hint,statement_stack);			-- build conjunction to use in Discharge-type deductions

 		nss := #statement_stack;
--print("<BR>form_discharge_conj: "); for s in statement_stack loop print("<BR>",unicode_unpahrse(s)); end loop; print("<BR>end stack listing: <P>"); 
 		if (fl := front_label(ssnss := statement_stack(nss))) /= "" then
 			match(ssnss,fl); span(ssnss,": \t"); statement_stack(nss) := fl + ": (not(" + ssnss + "))";	-- invert the last statement on the stack
 		else
 			statement_stack(nss) := "(not(" + ssnss + "))";		-- invert the last statement on the stack
 		end if;
 		
 		
		return form_ed_conj(true,"Discharge",hint,statement_stack);
	end form_discharge_conj;
 	
 	procedure form_discharge_conj_nodiagnose(hint,statement_stack);			-- build conjunction to use in Discharge-type deductions
 										-- version supressing 'label not seen' diagnostic messages; no inversion of final element in this case

 		nss := #statement_stack;
		res := form_ed_conj(false,"Discharge",hint,statement_stack);
		rspan(res," \t"); rmatch(res,";");		-- remove terminating semicolon
		return res;
	end form_discharge_conj_nodiagnose;
		
 	procedure form_ed_conj(diagnose,ed,hint,statement_stack);			-- build conjunction to use in ELEM-type deductions
 				-- the hint passed should either be an empty string or have the form appropriate to "ELEM", namely (Stat..,Stat..,..)ELEM
		ned := #ed;		-- length of the keyword ('ELEM' or 'Discharge')
		
		if #hint > ned and hint(close_posn := #hint - ned) = ")" then			-- the context of the deduction is constrained	
--->analysis of hints
			constraint_label := hint(2..close_posn - 1);		-- get the constraint_label
	
			if (ncl := #constraint_label) > 0 and (lcl := constraint_label(ncl)) in "+*" then  
	
				if lcl = "*" then 
					squash_details := true; 		-- set the squash_details flag, forcing blobbing of functions with some known properties
				elseif lcl = "+" then 
					try_harder := false; 			-- set the try_harder flag, allowing additional Davis-putnma cases to be examined
				end if; 
				constraint_label := constraint_label(1..ncl - 1);		-- and drop the indicator character just used
	
			end if;
						-- now examine the remaining constraint labels to see which of the previous proof statements are to be used
			if constraint_label = ""  then			-- null constraint label; use just the statement

				conj := conjoin_last_neg(statement_stack(#statement_stack..));
	
			else									-- non-null constraint label, restricting the set of statements to be used

				constraint_labels := [x in  breakup(constraint_label," \t,;*+") | x /= ""]; 		-- restriction clauses can be separated by commas or semicolons
				conjoined_statements := [];			-- will collect
--print("<P>form_ed_conj constraint_labels: ",constraint_labels," ",join(statement_stack,"<BR>"));				
				for constraint_label in constraint_labels loop
					
					-- if the label is not found on the stack, somewhere below the top of the stack (which end with the negative of the desired conclusion)
--					if not (exists kk in [nss := #statement_stack - 1,nss - 1..1] | 
					if not (exists kk in [nss := #statement_stack - if ed = "ELEM" then 1 else 0 end if,nss - 1..1] | 
																	front_label(statement_stack(kk)) = constraint_label) then 

						if diagnose then 			-- diagnose missing constraint labels if 'diagnose' flag is set
							printy(["Constraint label ",constraint_label," appears in " + ed + " deduction ",statement_stack(nss)," but not seen as earlier prefix"]);
						end if;
						
						continue;				-- bypass this ELEM deduction 
					end if;
					
					if #constraint_labels = 1 then 			-- if there is just one constraint label,
															-- use everything back to the last previous statement carrying this label
						conjoined_statements := statement_stack(kk..nss);
										-- take the stack items back to the constraint label
					else
						conjoined_statements with:= statement_stack(kk);			-- collect just the stack items with the constraint labels
					end if;
				
				end loop; 
	
				conj := conjoin_last_neg(conjoined_statements with:= statement_stack(#statement_stack)); 	
							-- add the negation of the desired conclusion						
	
			end if;
			
		else 			-- the context of the ELEM is not constrained; use it all

			conj := conjoin_last_neg(conjoined_statements := statement_stack);
	
		end if;
	
		return conj;
	
	end form_ed_conj;

	--      ************* context-stack to conjuction conversion for inferencing in general  ***************

	procedure build_conj(citation_restriction,statement_stack,final_stat);	
							-- build conjunction, either of entire stack or of statements indicated by conjunction restriction
			-- we collect the undischarged statements (either back to the start
			-- of the the current theorem, or as constrained by the constraint labels given),
			-- append the substituted theorem or statement citation and the negative of the current conclusion to it, and 
			-- perform a standardized ELEM check

--printy(["\nbefore substitution: ",theorem_cited," ",replacement_map]);
--printy(["\nafter substitution: ",unparse(stt),"\n",stt]);		-- make substitution

					-- now examine the remaining constraint label to see which of the previous proof statements are to be used
		if citation_restriction /= ""  then			-- non-null constraint label; use just the statements indicated

			constraint_labels := [x: x in  breakup(citation_restriction," \t,;") | x /= ""]; 		-- restriction clauses can be separated by commas or semicolons
			conjoined_statements := [];			-- will collect
--print("<P>citation_restriction: ",citation_restriction," ",constraint_labels);			
			for constraint_label in constraint_labels loop

				if not (exists kk in [nss := #statement_stack,nss - 1..1] | front_label(statement_stack(kk)) = constraint_label) then 
					printy(["Constraint label ",constraint_label," appears in theorem citation deduction ",stat," but not seen as earlier prefix"]);
					continue;				-- ignore this constraint label 
				end if;
				
				if #constraint_labels = 1 then 			-- if there is just one constraint label,
														-- use everything back to the last previous statement carrying this label
					conjoined_statements := statement_stack(kk..nss - 1);
									-- take the stack items back to the constraint label
				else
					conjoined_statements with:= statement_stack(kk);			-- collect just the stack items with the constraint labels
				end if;
--printy(["conjoined_statements: ",conjoined_statements]);						
			end loop; 

				else		-- there is no restriction; take the whole earlier part of the stack
-- new section ends here
			conjoined_statements := statement_stack(1..(nss := #statement_stack) - 1);
		end if;

		conjoined_statements with:= (" not (" +  statement_stack(nss) + ")");		-- add the negation of the conclusion to be drawn
 		conjoined_statements with:= final_stat;			-- add the string form of the substituted theorem
		conjoined_statements := [drop_labels(stat)(1): stat in conjoined_statements];		-- drop all the embedded labels

		return conj := "(" + join(conjoined_statements,") and (") + ");";			-- build into conjunction

	end build_conj;
  
  	procedure strip_white(stg); span(stg," \t"); rspan(stg," \t"); return stg; end strip_white;
  
					--      ************* definition checking ***************
	
	procedure check_definitions(start_point,end_point);		-- check the definition citation inferences in the indicated range
	
			-- note that the verifier system accepts three forms of definition: 
			-- (i) ordinary algebraic definitions, whose right side is a setformer or other valid expression not involving the
			--		symbol being defined 
			-- (ii) (transfinite) recursive definitions, which have the same form as ordinary algebraic definitions,
			--		but with the defined functions symbol appearing on the right, in a manner subject to detailed syntactic
			--		restrictions described below
			-- (iii) implicit definition, by appearance as a defined symbol in an APPLY statement (this includes 'definition by Skolemization')
			
			-- Moreover, each definition can either be global (to 'Set_theory'), global to some subtheory of 'Set_theory',
			-- or local to some proof.
		
		printing := (ostart := start_point) <  -999;			-- flag to control printing of diagnostic messages
		start_point max := 1;
		
		init_proofs_and_theories();
		-- ensure initialization of digested_proofs, parent_of_theory,theors_defs_of_theory,assumps_and_consts_of_theory
--printy(["\nStarting check_definitions and theories"]);	
		if definitions_handle = OM then			-- read the file of definitions if they have not already been read

			init_logic_syntax_analysis();			-- obligatory initialization
			definitions_handle ?:= open(user_prefix + "definition_tup_file","TEXT-IN");
			reada(definitions_handle,definitions_tup); close(definitions_handle);
			printy(["number of symbol definitions is: ",#definitions_tup]);

					-- convert the definitions_tup to a map from symbol names to the definition of the symbol in question,
					-- which must be given the form of a theorem asserting an equality or equivalence. 
					-- we also build an auxilary map from defined symbols to the section numbers of their definitions.
			symbol_def := {};			-- map from symbol names to the definition of the symbol in question
--printy(["\nStarting loop over definitions tup, length is ",#definitions_tup]); 		
			for [th_of_def,deftext] = definitions_tup(nn) loop
--if nn >= #definitions_tup then printy(["Have checked: ",nn]); end if;
 				span(deftext," \t");

				mayapply := #(orig_deftext := deftext) >= 5 and deftext(1..5) = "APPLY";		-- check for definition by theory application
--if nn > 148 then  print("mayapply: "); end if;
				if mayapply then 		-- if definitions by theory application then capture the fact that the output arguments are defined by the APPLY

					break(deftext,"("); match(deftext,"("); output_args_list := break(deftext,")"); 		-- isolate the output args list
					output_args_list := breakup(breakup(output_args_list,","),":");

					if exists p in output_args_list | (not is_tuple(p) or #p /= 2) then 
						printy(["***** Syntax error in APPLY output argument list: ",orig_deftext]); continue;
					end if;
					
					things_defined := {case_change(y,"lu"): [x,y] in output_args_list};
					
					if #things_defined /= #output_args_list then 
						printy(["***** Duplicated outputs in APPLY output argument list: ",orig_deftext]); continue;
					end if;
					
					for thing in things_defined loop symbol_def(th_of_def + ":" + thing) := [[],"defined_by_theory_application"]; end loop;
					
					continue;				-- done with this case
				end if;		-- end if mayapply
--if nn > 148 then print("here1"); end if;	
				orig_defstart := defstart := break(deftext,"=");		-- otherwise isolate the part of the definition preceding ":="
				if #deftext /= 0 and deftext(1) in "¥•" then 		-- workaround ***********
--					defstart2 := match(deftext,"•"); defstart3 := break(deftext,"="); defstart +:= (defstart2 + defstart3);  -- Mac version
					defstart2 := match(deftext,"¥"); defstart3 := break(deftext,"="); defstart +:= (defstart2 + defstart3); 
				end if;
				mustco := rmatch(defstart,":");
				if mustco = "" then if printing then printy(["***** Definition error. Def start is ",orig_defstart," orig is ",deftext]); end if; continue; end if;
				rspan(defstart," \t");
				pieces := segregate(defstart,"Def(");

				if exists piece = pieces(j) |  #piece > 3 and piece(1..4) = "Def(" then 
					cleandef := "" +/ pieces(j..) + " :" + deftext; 
				else
					symbdef := rbreak(defstart," \t"); cleandef := symbdef + " :" + deftext;
				end if;
--if th_of_def = "wellfounded_recursive_fcn" then if printing then printy(["cleandef: ",cleandef]); end if; end if;
				if (deftree := parse_expr(cleandef + ";")) = OM then 

					if printing then printy(["***** Syntax error in definition: ",cleandef]); end if; continue;

				end if;

				[defop,left_part,right_part] := deftree(2);

				if defop /= "ast_assign" then 
					if printing then printy(["***** Error - definition does not have obligatory 'assignment' form: ",cleandef]); end if;
				 	continue;
				 end if;
				
				if is_string(left_part) then 
 
 					symbdef := left_part; arglist := [];
 				 
 				elseif left_part(1) = "ast_pow" then 
 
 					symbdef := "AST_POW"; arglist := left_part(2..); 

				elseif left_part(1) = "ast_domain" then 

 					symbdef := "AST_DOMAIN"; arglist := left_part(2..);
				 
 				elseif left_part(1) = "ast_range" then 

 					symbdef := "AST_RANGE"; arglist := left_part(2..);

				elseif left_part(1) /= "ast_of" then

					if printing then printy(["***** Error - definition does not have obligatory 'function assignment' form: ",cleandef]); end if;
				 	continue;

				 else
				 	
				 	[-,symbdef,arglist] := left_part;

					if symbdef = "DEF" then 		-- defining a binary infix operator
		 				symbdef := case_change((al2 := arglist(2))(1),"lu");
		 				arglist := if symbdef /= "TILDE_" then al2(2..) else [al2(2)] + al2(3)(2..) end if;
--print("<BR>al2: ",al2);		 				
		 				left_of_def(th_of_def + ":" + symbdef) := al2; 
		 				if symbdef = "AST_ENUM_TUP" then left_of_def(th_of_def + ":[]") := al2; end if;
		 				if symbdef = "AST_NELT" then left_of_def(th_of_def + ":#") := al2; end if;
		 				if symbdef = "TILDE_" then left_of_def(th_of_def + ":~") := al2; end if;
		 				if symbdef = "AT_" then left_of_def(th_of_def + ":@") := al2; end if;
		 			else
		 				arglist := arglist(2..);
		 			end if;
					 
				end if;		-- end if is_string

					-- now we (re-)check that no symbol has been defined twice in a given theory or any of its ancestors, 
					-- and that all the functions and free variables on the right-hand side of the definition are either 
					-- previously defined symbols or function arguments. function arguments cannot appear as function symbols.
					-- function arguments cannot appear twice, and must be simple strings.
					-- if the defined symbol itself appears in the right-hand side, it must appear as a function symbol
					-- or infix operator, and it is then subject to the special checks that apply to recursive definitions

				if symbol_def(th_of_def + ":" + symbdef) /= OM then 		

					if printing then printy(["***** Error - symbol: ",symbdef," has previous definition in same theory"]);
					printy(["Will ignore new definition: ",cleandef]);  end if;
				 	continue;
				
				end if;			-- check also that there is no definition in ancestral theory

				ancestor_theories := []; cur_th := th_of_def;
				while (cur_th := parent_of_theory(cur_th)) /= OM loop		-- construct the chain of ancestor theories
					ancestor_theories with:= cur_th;
				end loop;

				if exists anc_th in ancestor_theories | symbol_def(anc_th + ":" + symbdef) /= OM then 		

					if printing then printy(["***** Error - symbol: ",symbdef," has previous definition in ancestor theory ",anc_th]); 
					printy(["Will ignore new definition: ",cleandef]); end if;	
				 	continue;
				
				end if;			-- check also that there is not definition in ancestral theory
				
				if exists x in arglist | not is_string(x) then 

					if printing then printy(["***** Error - argument symbols: ",{x in arglist | not is_string(x)}," are not simple variables ",left_part]); 
					printy(["Will ignore new definition: ",cleandef]); end if;	
				 	continue;
				
				end if;

				if exists x in arglist | get_symbol_def(x,th_of_def) /= OM then 

					if printing then printy(["***** Error - argument symbols: ",{x in arglist | symbol_def(x) /= OM}," have previous definition"]); 
					printy(["Will ignore new definition: ",cleandef]); end if;
				 	continue;
				
				end if;

				if #arglist /= #(set_of_args := {x: x in arglist}) then 

					if printing then printy(["***** Error - repeated argument symbol in function definition: "]); 
					printy(["Will ignore definition: ",cleandef]); end if;
				 	continue;
				
				end if;

				[free_variables,function_symbols] := find_free_vars_and_fcns(right_part); 
--if printing then printy(["[free_variables,function_symbols]: ",free_variables," ",function_symbols]); end if;	
--if printing then printy(["assumps_and_consts_of_theory: ",assumps_and_consts_of_theory(th_of_def)," ",th_of_def," symbdef: ",symbdef]); end if;
				free_variables := {x in free_variables | get_symbol_def(x,th_of_def) = OM};
								-- drop defined constants from the set of free variables
				assumed_symbols_of_th_of_def := {breakup(case_change(x,"lu"),"(")(1): x in (acctd := assumps_and_consts_of_theory(th_of_def))(1)};
						-- get the set of assumed symbols of theory in which definition appears
--printy(["acctd: ",acctd]);			
				
				defconsts_in_ancestors := {"O","U","V","R","R_0","R_1"};				--  ****************** Temporary - fix  ********* *********
		
				if (badfrees := free_variables - set_of_args - assumed_symbols_of_th_of_def - defconsts_in_ancestors) /= {} then

					if true or printing then 
						printy(["***** Error - free variable on right of definition that is not definition argument: ",badfrees," right-hand part of definition is: ",unparse(right_part)]); 
--printy(["assumed_symbols_of_th_of_def: ",assumed_symbols_of_th_of_def]);
--						printy(["Will (not really) ignore definition: ",cleandef]); total_err_count +:= 1;
						null;
					end if;
				 	continue;			-- ******** disable ******** until assumed variables of theories are handled properly

				end if;		-- end if badfrees
				
				if (badfsymbs := {f in function_symbols | get_symbol_def(f,th_of_def) = OM 
										and f /= symbdef and #f > 4 and f(1..4) /= "ast_"} - assumed_symbols_of_th_of_def) /= {} then

--					if true or printing then printy(["***** Error - undefined function symbols ",badfsymbs," are used on right of definition of ",symbdef]); 
--					printy(["Will accept definition, but only provisionally : ",cleandef]); end if; total_err_count +:= 1;
					null;
					
				end if;		-- end if badfsymbs
								
				if symbdef in function_symbols then			-- definition is recursive
					
					if not recursive_definition_OK(symbdef,arglist,right_part) then		-- recursive definition does not have valid structure
	
						if true or printing then 
							printy(["***** Error - recursive definition of ",symbdef,"(",join(arglist,","),")"," does not have valid structure. "]); 
							printy(["Will ignore this definition"]); end if; 
							total_err_count +:= 1;
				 		continue;

					end if;
--printy(["recursive definition::::::: ",cleandef]);
				end if;
--if th_of_def = "wellfounded_recursive_fcn" then printy(["********* on record: ",th_of_def + ":" + symbdef," ",right_part]); end if;
				symbol_def(th_of_def + ":" + symbdef) := [arglist,right_part]; 
								-- place the new definition on record

			end loop;		-- end for [th_of_def,deftext] = definitions_tup(nn) loop
		
		end if; 		-- end if definitions_handle = OM

--printy(["number of symbol definitions in specified range is: ",#symbol_def]); 
		
		for hint_stat_tup = digested_proofs(proofno) loop				-- get the tuple of hints and statements for the proof
			
			if proofno < start_point then continue; end if;
			if proofno > end_point or hint_stat_tup = OM then exit; end if;
--printy(["hint_stat_tup: ",hint_stat_tup]);			
							-- separate out the section number of the theorem and use it to get the theorem id
			theorem_section_number := abs(hint_stat_tup(1)) - 1;			-- take absolue value to allow or role of sign as use_proof_by_structure flag
			hint_stat_tup := hint_stat_tup(2..);
					-- now iterate over all the 'Use_def' statements within the proof.  
					-- For each one of them, first verify that the definition precedes its use,
					-- and then verify that the use produces the conclusion asserted.
			
		end loop;

		if ostart < -9900 then return; end if;			-- do not process APPLYs if was called from APPLY

		def_in_theory := {breakup(x,":"): x in domain(symbol_def)};		-- maps each theory into the set of symbols defined in theory
		
					-- but need to add in the symbols assumed by the theory, plus all the symbols defined by theorem-level APPLYs
					-- in the theory
printy(["definition analysis complete, starting theory analysis: "]); 
	for [theorie,assump_and_consts] in assumps_and_consts_of_theory, symb in assump_and_consts(1) | "•" notin symb and "¥" notin symb and "(" notin symb loop		
			def_in_theory with:= [theorie,symb]; 
	end loop;
	def_in_theory := {[x,def_in_theory{x}]: x in domain(def_in_theory)};		-- same, as set-valued map

--printy(["ostart: ",ostart]);

	for [th_of_def,deftext] = definitions_tup(nn) loop		-- now we iterate once more over the definitions, handling the APPLYs

		span(deftext," \t");

		mayapply := #(orig_deftext := deftext) >= 5 and deftext(1..5) = "APPLY";		-- check for definition by theory application

		if not mayapply then continue; end if;			-- handling the APPLYs only
		
		[theory_name,apply_params,apply_outputs,resulting_thm] := decompose_apply_hint(deftext)?[]; 
--printy(["APPLY: ",[theory_name,apply_params,apply_outputs,resulting_thm]]);
		if apply_outputs = OM then continue; end if;

		if (split_apply_outputs := get_apply_output_params(apply_outputs,deftext)) = OM then continue; end if;
				-- decompose and validate apply_outputs, returning them as a tuple of pairs
				-- if apply_outputs are not valid, then bypass remainder of processing for this definition
		
		def_in_theory(th_of_def) := (def_in_theory(th_of_def)?{}) + {symb: [-,symb] in split_apply_outputs}; 
				-- add the symbols defined by theory application to the set of defined symbols of a theory

				-- otherwise we will also have a collection of syntactically validated substitution expressions.
				-- check that substitution expressions have been provided for all the assumed functions of the theory and only these
--printy(["theory_name: ",theory_name]);
		number_of_statement := "theory " + theory_name + "-related";		-- dummies for subsequent failure diagnostic
		number_of_statement_theorem := "APPLY statement";
		statement_being_tested := resulting_thm;
		
		if theory_name /= "Skolem" then     -- top-level non-Skolem inference

			if check_an_apply_inf(resulting_thm,theory_name,apply_params,apply_outputs) = OM then
printy(["<BR>resulting_thm,theory_name,apply_params,apply_outputs:<BR>",resulting_thm,theory_name,apply_params,apply_outputs]);
				printy(["******* attempt to deduce theorem by top-level APPLY inference failed: ",resulting_thm]);
			else
				null; -- printy(["Deduction of ",resulting_thm," by APPLY inference successful...."]);
			end if;
		else     							-- top-level Skolem inference
			
			if (theorem_to_verify := theorem_map(resulting_thm)) = OM then
				printy(["******* Illformed thorem name in top-level Skolem inference: ",resulting_thm]);
			end if;

			if check_a_skolem_inf(resulting_thm,theorem_to_verify,apply_params,apply_outputs) = OM then
				printy(["******* Skolem inference failed: ",resulting_thm]);
			else
				null; --printy(["Deduction of ",resulting_thm," by top-level Skolem inference successful...."]);
			end if;

		end if;
	 
	 end loop;
printy(["Checking assumps_and_consts_of_theory, length is : ",#assumps_and_consts_of_theory]); 
--printy(["def_in_theory: ",def_in_theory]); stop;
		-- Now check the assumed functions and assumptions of all theories. 
		-- The assumed functions must be wellformed and have simple, non-repeating arguments.
		-- The assumptions must be well-formed formulae without free variables, and must involve no functions or constants 
		-- other than those assumed in the theory or assumed or defined in its parent theories.
	 	
	assumed_symbs := {};		-- will collect set of assumed symbols
debug_n := -1;	
	for [assumed_fcns,assumps] = assumps_and_consts_of_theory(th) | th /= "Set_theory" loop
--if 	(debug_n +:= 1) >= 52 then printy(["have checked ",debug_n," #assumed_fcns: ",#assumed_fcns]); end if;
--if 	debug_n >= 52 then printy(["before check_an_external_theory ",debug_n]); end if;			
		if th(1) = "_" then check_an_external_theory(th,assumed_fcns,assumps); continue; end if;
--if 	debug_n >= 52 then printy(["after check_an_external_theory ",debug_n]); stop; end if;			
		for af in assumed_fcns loop

			if (afp := parse_expr(af + ";")) = OM then
				printy(["******* illformed assumed function in THEORY ",th,": ",af]); 
				total_err_count +:= 1;
				continue;
			end if;
if 	debug_n >= 53 then printy(["at is_string ",debug_n]); stop; end if;		
			afp := afp(2); 			-- drop the 'list' prefix
				
			if is_string(afp) then 			-- assumed constant 
			
				assumed_symbs(th) := (assumed_symbs(th)?{}) with afp;		-- associate assumed constant with theory
				
			elseif (lop := afp(1)) /= "ast_of" then 		-- check to see if the assumed function has infix form
			
				if #lop < 5 or lop(1..4) /= "DOT_" then		-- error, since must have simple function
					printy(["******* illformed assumed function in THEORY ",th,": ",af," is not a simple function"]);
					total_err_count +:= 1;
					continue;
				elseif #afp	/= 3 then		-- we must have an infix operator, but don't 
					printy(["******* illformed assumed function in THEORY ",th,": ",af," is not an infix function"]);
					total_err_count +:= 1;
					continue;
				elseif not (is_string(a1 := afp(2)) and is_string(a2 := afp(3))) then		-- we must have a simple operator, but don't 
					printy(["******* illformed assumed function in THEORY ",th,": ",af," does not have simple variables as arguments"]);
					total_err_count +:= 1;
					continue;
				elseif a1 = a2 then		-- we must have a simple operator, but don't 
					printy(["******* illformed assumed function in THEORY ",th,": ",af," has two identical arguments"]);
					total_err_count +:= 1;
					continue;
				end if;
				
				assumed_symbs(th) := (assumed_symbs(th)?{}) with lop;		-- associate assumed infix operator with theory
				continue;

			elseif exists x in (fcn_args := afp(3)(2..)) | (not is_string(x)) then 		-- error, since must have simple arguments
				printy(["******* illformed argument of assumed function in THEORY ",th,": ",af," has a compound argument"]);
				total_err_count +:= 1;
				continue;
			elseif #fcn_args /= #{x: x in fcn_args} then 		-- error, since must have non-repeated arguments
				printy(["******* assumed function in THEORY ",th,": ",af," has a repeated arguments"]);
				total_err_count +:= 1;
				continue;
			end if;
			
			assumed_symbs(th) := (assumed_symbs(th)?{}) with afp(2);		-- associate assumed function symbol with theory

						-- at this point the list of assumed functions of the theory has passed all checks
						-- now we check that each theory assumption is well-formed, and fully quantified, 
						-- and involves no symbol not either assumed in the theory, or defined or assumed
						-- in one of its ancestor theories.  
						-- Note that every ancestor theory of a theory must have been declared berore the theory.
--->working_definitions							
			ancestor_theories := [];			-- find the ancestor theories of the theory being applied
			theory_nm := th;
			while (parent_theory := parent_of_theory(theory_nm)) /= OM loop
				ancestor_theories := [parent_theory] + ancestor_theories; theory_nm := parent_theory;
			end loop;
			
			for assump in assumps loop
				
				if (assp := parse_expr(assump + ";")) = OM then
					printy(["******* illformed assumption in THEORY ",th,": ",assump]); 
					total_err_count +:= 1;
					continue;
				end if;
				
				assp := assp(2); 			-- drop the 'list' prefix
				freevs := find_free_vars(assp);			-- find the free variables of the assumption
				
			end loop;
--printy(["ancestor_theories: ",th," ",ancestor_theories]);	 	

		end loop;

	end loop;
printy(["\n<BR>Done checking definitions and theories"]); 
--printy(["assumed_symbs for theories: ",assumed_symbs]);	 	-- report on assumed symbs for theories if desired

	end check_definitions;
	
	--      ************* Checking of recursive definitions ***************

	procedure recursive_definition_OK(symbdef,arglist,right_part);		-- check a recursive definition for syntactic validity
		-- for a recursive definition to be syntactically valid, the function 'symbdef' being defined must have 
		-- at least one 'properly restricted' argument. That is, there must exist an argument position (e.g. the first)
		-- such that every right-hand occurrence of symbdef(y,..) is within a scope in which y is bound by an iterator
		-- of the form 'y in x', where x is the definition argument in the same (e.g. the first) position.
		
		-- theories which support more general forms of recursive definition can relax this restriction.

		var arg_positions_OK;			-- global used during execution of interior workhorse: 
										-- remaining set of argument positions that are properly restricted.
--printy(["recursive_definition_OK: ",symbdef," ",arglist," ",right_part]);			

		if (arg_positions_OK := {1..#arglist}) = {} then return false; end if;			-- initially assume that all positions are OK
		recursive_definition_OK_in(right_part,{}); 	-- call the inner workhorse, which will prune the acceptable set of positions	
--printy(["arg_positions_OK: ",arg_positions_OK]);
		return arg_positions_OK /= {};				-- definition is  OK if any acceptable argument positions remain

		procedure recursive_definition_OK_in(node,var_bindings); 		-- check a recursive definition for syntactic validity (inner workhorse)

			if is_string(node) then return; end if; 		-- down to a simple variable, so nothing more to do
	
			case (ah := abbreviated_headers(node(1)))
	
				when "and","or","==","+","-","{-}","in","notin","/==","=","/=","[]","[-]","{.}","itr","Etr","incs","incin","imp","*","->","not","null" =>
							 -- ordinary operators; just descend recursively to check the operator arguments
	
					for sn in node(2..) loop recursive_definition_OK_in(sn,var_bindings); end loop;
	
				when "arb","range","domain" => -- ordinary operators; just descend recursively to check the operator arguments
	
					for sn in node(2..) loop recursive_definition_OK_in(sn,var_bindings); end loop;
	
				when "()" => 				-- this is the case of functional and predicate application; the second variable is a reserved symbol, not a set
					
					if node(2) = symbdef then		-- we have an occurrence of the symbol being defined.
													-- examine its arguments and prune out all those which are not properly restricted
--printy(["node(2) = symbdef: ",node," ",symbdef]);						
						ap_OK_copy := arg_positions_OK;		-- we need only examine argument positions which are still candidiates for being 
															-- the position to which recursion is being applied.

						for n in ap_OK_copy loop		-- look at positions which are still candidates 

										-- if the argument in the position being examined is not a simple variable, the position is unsuitable for recursion
							if not is_string(param_n := node(3)(n + 1)) then arg_positions_OK less:= n; end if;
 
										-- if the binding of the simple variable in the position being examined does not restrict it to 
										-- membership in the left-hand variable originally in this position or if that left-hand variable
										-- is no longer free, the position is unsuitable for recursion
 							if var_bindings(param_n) /= ["in",aln := arglist(n)] or var_bindings(aln) /= OM then arg_positions_OK less:= n;  end if;

						end loop;

					end if;
--printy(["var_bindings: ",var_bindings," node: ",node," arg_positions_OK: ",arg_positions_OK]);
							-- also examine the function arguments recursively
					for sn in node(3..) loop recursive_definition_OK_in(sn,var_bindings); end loop;
	
				when "{}","{/}","EX","ALL" => var_bindings +:= find_quantifier_bindings(node); 			-- setformer or quantifier; note the bound variables

					for sn in node(2..) loop recursive_definition_OK_in(sn,var_bindings); end loop;		-- check the operation arguments
	
				when "@" => 							-- function composition
	
					for sn in node(2..) loop recursive_definition_OK_in(sn,var_bindings); end loop;		-- check the operation arguments
	
				when "if" => 							-- conditional expression
	
					for sn in node(2..) loop recursive_definition_OK_in(sn,var_bindings); end loop;		-- check the operation arguments
	
				otherwise => 		-- additional infix and prefix operators
	
					all_fcns with:= node(1);
					for sn in node(2..) loop recursive_definition_OK_in(sn,var_bindings); end loop;		-- check the operation arguments
			
			end case;
			
		end recursive_definition_OK_in;

	end recursive_definition_OK;

	--      ************* removal of internal labels from proof lines ***************

		-- Proof lines as found in an original scenario file, and also in its digested form, can contain labels of the form
		-- Statnnn, which are used for citation of statements (or statement parts), and for restring proof contexts
		-- when needed to improve inference efficieny. Before statements are parsed these labels must be removed
		-- by the following routine.
		
	procedure drop_labels(stg); 		-- finds location of Statnnn: in string, if any. 
										-- These labels are dropped, and positions of first characters are returned
		
--		drop_locdef(stg);				-- drop "Loc_def:" if it appears
		stg := join(breakup(stg,":"),": ");				--  put a blank after each colon
		tup := segregate(stg,"Stabcdefghijklmnopqrstuvwxyz:0123456789");
		newt := lablocs := labs := [];
		
		for sect = tup(j) loop
			if #sect > 5 and sect(1..4) = "Stat" and sect(#sect) = ":" then 				-- we have a label; record its location
				lablocs with:= 1 +/ [#piece: piece in newt];			--[#piece: piece in tup(1..j - 1)];
				labs with:= sect;
			else 				-- collect the piece of the formula outside labels
				newt with:= sect;
			end if;
		end loop;

--print("drop_labels: ",["" +/ newt,lablocs,labs],tup);
	 	return ["" +/ newt,lablocs,labs];

	end drop_labels;

	--      ************************************************************
	--      ************* Interface to the MLSS routines ***************
	--      ************************************************************
	
	-- after a conjunction intended for satisfiability testing has been built by the routines shown above
	-- it is prepared for submission to the MLSS decision routines of the back end by the following procedure. 
	-- this first rechecks the syntax of the conjunction, and sets flags to control blobbing coarseness and time allowed for
	-- inferencing. The formula is then blobbed, following which its blobbed form is 'boiled down'
	-- to eliminate clauses which can obviouusly contribute noting to a satisfiablity test,
				
	procedure test_conj(conj);		-- test a conjunct for satisfiability
	
		starting_occ := opcode_count();				-- opcode count at start of inferencing
		
--printy(["Parsing: ",conj]); printa(debug_handle := open("debug_file","TEXT-OUT"),"Parsing: ",conj); close(debug_handle); 
		
		debug_conj := conj; abend_trap := show_conj;		-- set a printout to trigger in case this routine aborts
				-- debug_conj2 is used to indicate the conjunct being tried when inferences are getting slow
		
		if (tree := if is_string(conj) then parse_expr(conj) else conj end if) = OM then
			print("STOPPED by syntax error in conj: ",conj); stop;
		end if;
		debug_conj := "Not a parse problem"; 
		
		if tree = OM then 
			printy(["PARSE ERROR: ",conj]); printy([statement_stack]); 
			tested_ok := false; 
			cycles_inferencing +:= (opcode_count() - starting_occ);			-- accumulate the inferencing cycles
			return;
		end if;
--printy(["Done Parsing: ",allow_blob_simplify]);
		if is_string(conj) then tree := tree(2); end if;	-- if parameter was string then take component 2 of parsed form (to drop 'ast_list')

--		debug_conj2 := unicode_unpahrse(tree);

		if squash_details then allow_unblobbed_fcns := false; end if;	-- temporarily drop global flag if details not wanted in inference
--print("<BR>about to blob: ",tree);
		blobbed_tree := if allow_blob_simplify then blob_tree(tree) else blob_tree_in(tree) end if; 
				-- blob the conjunction, with last element reversed; for equals inferences don't restart blob counter and map
--print("<BR>blobbed_version: ",blobbed_tree);

		allow_unblobbed_fcns := true; 				-- restore global flag

		kbl := branches_limit; if try_harder then branches_limit := 40000; end if; 	-- set larger branches_limit for model testing
		start_time := time();

		blobbed_tree := boil_down_blobbed(otree := blobbed_tree); 		-- Added March 26,2002: simplify before further processing
--print("<BR>boil_down_blobbed: ",blobbed_tree);
		formula_after_blobbing := otree;								-- to generate report when inference is slow
		formula_after_boil_down := blobbed_tree;						-- to generate report when inference is slow
		
		if show_details then 			--   print out details of an inference being attempted, for debugging purposes.
			printy(["conj: ",conj]);
			printy(["\notree: ",unicode_unpahrse(otree)]); 
			printy(["\nblobbed_tree: ",unicode_unpahrse(blobbed_tree)]); 
			printy(["\notree after step 1 of first simplification: ",unicode_unpahrse(simp3)]);
			printy(["\notree after step 2 of first simplification: ",unicode_unpahrse(simp2)]);
				printy(["\notree after first full simplification: ",unicode_unpahrse(simp1)]);
			printy(["\nnumber of occurrences of blobs: ",{[x,y] in num_occurences_of | y /= 999999}]);
		end if; 

		tested_ok := false;			-- assume not OK. This flag will be set to 'true' by the back-end satisfiability testing
									-- routines if the inferece being attempted succeeds. If an inference is abandoned,
									-- those routines will return the string value "???????". Given this inforation,
									-- we can report on the success or failure of th inference.
--print("<BR>testing model_blobbed: ",blobbed_tree);
		if (mb := model_blobbed(blobbed_tree)) = OM then 			-- no model, since verification succeeds
				-- first test to see if inference succeeds without use of proof by structure
			ok_counts +:= 1; ok_total +:= 1;	 					-- count the number of successful verifications
			tested_ok := true;
		
				
				-- if not we try to use of proof by structure, if the use_proof_by_structure falg is set
		elseif use_proof_by_structure then 		-- conjoin extra proof_by_structure  clauses to the basic  conjunction, see if inference succeeds this way
						-- *******************************************************
						-- *********** interface to proof_by_structure *********** 
						-- *******************************************************

			addnal_conjs := {[x,y] in extract_relevant_descriptors(otree := tree) | y /= just_om_set};
				-- extract additional clauses from the initial conjunction, which represents all the clauses available at this stge of the proof.
		
			if addnal_conjs /= {} and (addnal_assertions := get_assertions_from_descriptors(addnal_conjs)) /= "" then 
				addnal_assertions_tree := parse_expr(addnal_assertions  + ";")(2); 
				tree := ["ast_and",tree,addnal_assertions_tree];		-- conjoin the additional assertions supplied by proof_by_structure
			end if;		

			debug_conj2 := unicode_unpahrse(tree);
--print("<P>debug_conj2: ",debug_conj2,"<P>addnal_conjs: ",addnal_conjs,"<P>addnal_assertions: ",addnal_assertions,"<P>addnal_assertions_tree: ",addnal_assertions_tree,"<P>tree: ",tree);
			if squash_details then allow_unblobbed_fcns := false; end if;	-- temporarily drop global flag if details not wanted in inference

			blobbed_tree := if allow_blob_simplify then blob_tree(tree) else blob_tree_in(tree) end if; 
				-- blob the conjunction, with last element reversed; for equals inferences don't restart blob counter and map

			allow_unblobbed_fcns := true; 				-- restore global flag
	
			kbl := branches_limit; if try_harder then branches_limit := 40000; end if; 	-- set larger branches_limit for model testing
			start_time := time();
	
			blobbed_tree := boil_down_blobbed(otree := blobbed_tree); 		-- Added March 26,2002: simplify before further processing
	
			formula_after_blobbing := otree;								-- to generate report when inference is slow
			formula_after_boil_down := blobbed_tree;						-- to generate report when inference is slow
			
			if show_details then 			--   print out details of an inference being attempted, for debugging purposes.
				printy(["conj: ",conj]);
				printy(["\notree: ",unicode_unpahrse(otree)]); 
				printy(["\nblobbed_tree: ",unicode_unpahrse(blobbed_tree)]); 
				printy(["\notree after step 1 of first simplification: ",unicode_unpahrse(simp3)]);
				printy(["\notree after step 2 of first simplification: ",unicode_unpahrse(simp2)]);
					printy(["\notree after first full simplification: ",unicode_unpahrse(simp1)]);
				printy(["\nnumber of occurrences of blobs: ",{[x,y] in num_occurences_of | y /= 999999}]);
			end if; 
	
			tested_ok := false;			-- assume not OK. This flag will be set to 'true' by the back-end satisfiability testing
										-- routines if the inferece being attempted succeeds. If an inference is abandoned,
										-- those routines will return the string value "???????". Given this inforation,
										-- we can report on the success or failure of th inference.
			if (mb := model_blobbed(blobbed_tree)) = OM then 			-- no model, since verification succeeds

				ok_counts +:= 1; ok_total +:= 1;	 					-- count the number of successful verifications
				tested_ok := true;
			end if;
		end if;
		
		if tested_ok then		-- one of the two preceding verification attempts succeeded, so there is nothing more to do
			null;
		elseif show_error_now then 		-- else verification failed, so may need to diagnose

			if is_string(mb) and mb(1..7) = "???????" then 		-- the inferecne was abandoned, so diagnose as abandoned

				printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested, "\nAbandoned attempt to derive MLS contradiction\n", 
					"\n<P>reduced blobbed statement was:\n\n\t",unicode_unpahrse(blobbed_tree)]);
												-- the statement stack from which the blob being tested was derived
				printy(["<P>Statement stack with negated last statement is: "]); 
				for x in conjoined_statements?["Stack not available"] loop printy([unicode_unpahrse(parse_expr(drop_labels(x)(1) + ";"))]); end loop; 
				if addnal_conjs /= {} and addnal_assertions?"" /= "" then printy(["Additional clauses supplied by proof_by_structure: ",addnal_assertions]); end if;

				if not show_details then 		-- print additional details concerining failure  
					printy(["\nblobbed formula tested for satisfiability:\n",unicode_unpahrse(otree)]); 									-- the blob being tested
					printy(["\nblobed formula after first full simplification:\n",unicode_unpahrse(simp1)]);	-- the blob after simplification
					printy(["\nconj:\n",if is_tuple (conj) then unicode_unpahrse(conj) else conj end if]);
					printy(["\nblob_name map is:\n",blob_name]);
				end if;

			elseif not optimizing_now then			-- otherwise issue an 'inference failed' diagnosis, provided not optimizing
				
if number_of_statement_theorem = OM then print("****** Error verifying step:"); return; end if;
						-- allow for external testing where less output is wanted 
				printy(["\n****** Error verifying step: " + number_of_statement?"number_of_statement" + " of theorem " 
							+ number_of_statement_theorem?"number_of_statement_theorem" + "\n<P>\t", statement_being_tested,"\n<P>Attempt to derive MLS contradiction has failed\n",
								"\n<P>reduced blobbed statement was:\n\n\t", unicode_unpahrse(blobbed_tree)]); 
												-- the statement stack from which the blob being tested was derived
				printy(["<P>Statement stack with negated last statement is:\n"]); 
				for x in conjoined_statements?["Stack not available"] loop printy([unicode_unpahrse(parse_expr(drop_labels(x)(1) + ";"))]); end loop; 
--				for x in conjoined_statements?["Stack not available"] loop printy([unparse(parse_expr(x + ";"))]); end loop; 
--print("addnal_conjs: ",addnal_conjs," otree: ",otree," statement_stack: ",statement_stack); 
				if addnal_conjs /= {} and addnal_assertions?"" /= "" then printy(["Additional clauses supplied by proof_by_structure: ",addnal_assertions," vars_to_descriptors: ",vars_to_descriptors," type: ",type(vars_to_descriptors)," debug_extract: ",debug_extract," debug_conj_tree: ",debug_conj_tree,""]); end if;

				if not show_details then 		-- print additional details concerining failure  
					printy(["\nblobbed formula tested for satisfiability:\n",unicode_unpahrse(otree)]); 									-- the blob being tested
					printy(["\nblobbed formula after first full simplification:\n",unicode_unpahrse(simp1)]);	-- the blob after simplification
					printy(["\nconj:\n",if is_tuple (conj) then unicode_unpahrse(conj) else unicode_unpahrse(parse_expr(conj)) end if]);
					printy(["\nblob_name map is:\n",blob_name]);
				end if;

			end if;

		end if;
	
		branches_limit := kbl;			-- restore default branches_limit for model testing
		
		cycles_inferencing +:= (opcode_count() - starting_occ);			-- accumulate the inferencing cycles

	end test_conj;

	procedure show_conj(); printy(["conj being tested: ",debug_conj]); end show_conj;
			-- abend routine for test_conj, used to debug the situation if an attempted inference crashes.

			-- the following small routines are used during conjuction building.
			
	procedure conjoin_last_neg(stat_tup);		-- invert the last element of a collection of clauses and rewrite using 'ands' 
		stat_tup := [drop_labels(stat)(1): stat in stat_tup];
		stat_tup(#stat_tup max 1) := neglast :=  "(not(" + stat_tup(#stat_tup max 1)?"false" + "))";
		return join(breakup("(" + join(stat_tup,") and (") + ");","&")," and ");
	end conjoin_last_neg;

	procedure conjoin_last_neg_nosemi(stat_tup);		
			-- invert the last element of a collection of clauses and rewrite using 'and' 
		stat_tup := [drop_labels(stat)(1): stat in stat_tup];
		stat_tup(#stat_tup) := "(not(" + stat_tup(#stat_tup) + "))";
		return join(breakup("(" + join(stat_tup,") and (") + ")","&")," and ");		-- no terminating semicolon
	end conjoin_last_neg_nosemi;

	procedure conjoin_last(stat_tup);		-- rewrite a collection of clauses and using 'ands' 
		stat_tup := [drop_labels(stat)(1): stat in stat_tup];
		return join(breakup("(" + join(stat_tup,") and (") + ");","&")," and ");		-- include terminating semicolon
	end conjoin_last;

	procedure collect_conjuncts(tree);			-- extract all top-level terms from a conjunction
--printy([tree]);
		if is_string(tree) then return [tree]; end if; 
		[n1,n2,n3] := tree; 
		return if n1 = "ast_and" then  collect_conjuncts(n2) + collect_conjuncts(n3) else [tree] end if;
					
	end collect_conjuncts;

			-- the following small routine is used during equality inferencing

	procedure collect_equalities(tree);			-- extract all top-level collect_equalities from a conjunction
--printy([tree]);
		if is_string(tree) then return []; end if; 
		[n1,n2,n3] := tree; 
		return if n1 = "ast_and" then  collect_equalities(n2) + collect_equalities(n3) elseif n1 = "ast_eq" or n1 = "DOT_EQ" then [tree] else [] end if;
					
	end collect_equalities;
	
					-- ******* disable/enable checking of particular classes of proofschecking ******* 

			-- the following routine,intended for use during initial system development and testing, 
			-- accepts a comma-delimited string argument, which it uses to disable particular inference classes
			-- especially before they have been implemented. Disabled inferences will always appear to succeed.

procedure disable_inferences(stg);		-- disables and re-enables the various kinds of inferences
			-- include a '*' in the list to disable by default
			
	list := breakup(stg,","); 
			-- first enable all the inference modes
	ntv := not(tv := if "*" in list then true else false end if);
	disable_elem := disable_tsubst := disable_algebra := disable_simplf := tv;
	disable_discharge := disable_citation := disable_monot := disable_apply := tv;
	disable_loc_def := disable_equal := disable_use_def := disable_assump := tv;

	for item in list loop

		case item

			when "elem" => disable_elem := ntv;

			when "tsubst" => disable_tsubst := ntv;

			when "algebra" => disable_algebra := ntv;

			when "simplf" => disable_simplf := ntv;

			when "discharge" => disable_discharge := ntv;

			when "citation" => disable_citation := ntv;

			when "monot" => disable_monot := ntv;

			when "apply" => disable_apply := ntv;

			when "loc_def" => disable_loc_def := ntv;

			when "equal" => disable_equal := ntv;

			when "use_def" => disable_use_def := ntv;
			
			when "assump" => disable_assump := ntv;
			
		end case;

	end loop;
	
end disable_inferences;

					-- *********************************************************************
					-- ** Library of routines for checking specific classes of inferences **
					-- *********************************************************************

	-- Each of the routines in the following subsectio of this file handles a particular kind of inference by analyzing 
	-- it hint and body, converting these and the context of the statement to an appropriate conjuction,
	-- and passing this to the routines seen above for ulimate transmission to the satisfiability tsting procedures
	-- of the verifier system back end.
	
	--      ************* Discharge inference checking ***************

			-- The following inferencing routine is a bit untypical since it first checks that a discharge inferene succeeds,
			-- in that its full context is contradictory, and if this is so must also check that the stated conclusion
			-- of the discharge is an elementary context of the negative of the last statement supposed and of the
			-- statements which precede that statement in the available context.

			-- Note that the context-stack manipulation needed in connectioon with the suppose-discharge mechanism 
			-- managed o\not by this routien by by code found at its point of call.
			
	procedure check_discharge(statement_stack,prior_suppose_m1,stat_in_discharge,discharge_stat_no,hint);
				-- checks a discharge operation; see comment below

--print("<P>Checking discharge of: ",stat_in_discharge," ",statement_stack);
			-- First we conjoin the collection of statements that should be contradictory at a Discharge.
			-- This is the set of all statements stacked up to the point just prior to the Discharge statement itself.
			-- Then we check that the statement in the Discharge is an ELEM consequence of the statements on the stack
			-- prior to last statement Supposed, plus the  negative of the last statement Supposed.  
			-- The statement in the Discharge can be labeled, so any labels that it may contain must be dropped. 
		
		hint_copy := hint; rspan(hint_copy," \t"); rmatch(hint_copy,"Discharge");		-- get the contxt section alone
		blob_and_try_hard_tag := rspan(hint_copy," \t=>)*+");			-- section of hint indicating coarse blobbing
--print("<BR>blob_and_try_hard_tag: ",blob_and_try_hard_tag," ",hint);		
					-- we conjoin everything stacked so far, as dictacted by the context; this should be a contradiction 
--		conj1a :=  conjoin_last(statement_stack);
		conj1 := form_discharge_conj(hint,statement_stack with ["false"]);			-- build conjunction to use in Discharge-type deductions
						-- we add 'false as a final statement, since this is the 'desired conclusion' in the first step of a discharge
--print("<BR>conj1: ",conj1);
--printy(["start parse: ",conj1]);		
		if (tree := parse_expr(conj1)) = OM then 
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,"\nBad Discharge syntax in proof step "]);
			printy(["syntactically illformed conjunction is\n",conj1]); 
			error_count +:= 1;
			return false;
		end if;

--printy(["unparse(tree(2)): ",unicode_unpahrse(tree(2))]);
		save_squash_details := squash_details; squash_details := "*" in blob_and_try_hard_tag;

		blobbed_tree := blob_tree(tree(2)); 		-- blob the conjunction
		blobbed_tree := boil_down_blobbed(otree := blobbed_tree); 		-- Added March 26,2002: simplify before further processing
		formula_after_blobbing := otree;					-- to generate report when inference is slow
		formula_after_boil_down := blobbed_tree;					-- to generate report when inference is slow

		mb := model_blobbed(blobbed_tree); 		-- see if we have a contradiction using everything stacked so far
--print("<P>squash_details1: ",squash_details," ",mb?"UNDEFINED");
		squash_details := save_squash_details;		-- restore the prior squash_details setting

--printy(["\n\ncheck_discharge: ",statement_stack," stat_in_discharge: ",stat_in_discharge," conj1: ",conj1," otree: ",otree]);
--printy([" blobbed_tree: ",blobbed_tree," ",type(blobbed_tree)," mb: ",mb]);		
		if mb /= OM then 		-- this is the failure case, first step

			if mb = "??????? Probably can't decide without excess work ??????? " then 
				printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nAbandoned attempt to find contradiction in Discharge\n",unicode_unpahrse(blobbed_tree)]);
			else
				printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,"\nFailure to find contradiction in Discharge\n"]); 
				printy(["\notree: ",unicode_unpahrse(otree)]); 
				error_count +:= 1;
				printy(["\notree after first simplification: ",unicode_unpahrse(simp1)]);
			end if;

			printy(["\nStatement stack with negated last statement is: "]); 
			for x in statement_stack loop printy([unicode_unpahrse(parse_expr(x + ";"))]); end loop;

			return false;			-- note first failure mode; conjunction formed from statements selected preceding discharge are not contadictory
		
		elseif optimization_mark or optimize_whole_theorem then 			-- ******* optimization is desired

			save_optimizing_now := optimizing_now; optimizing_now := true;			-- set optimization flag to suppress diagnosis;
			print("<BR>lines of context required for justification of the discharge statement on line ",discharge_stat_no,", namely ",hint," ==> ",stat_in_discharge," are: ", search_for_all(statement_stack with ["false"]));
			--print(" Optimized pure inference time for this inference step is: ",best_time_so_far);
			optimizing_now := save_optimizing_now;									-- restore optimization flag
		
		end if;		-- otherwise we must check that the statement appearing in the Discharge
					-- is an ELEM consequence of the statements on the stack prior to last 
					-- statement Supposed, plus the  negative of the last statement Supposed.
		if stat_in_discharge = "QED" then 	-- there is a claimed contradiction with an original Suppose_not;

			if prior_suppose_m1= 0 then		-- this is legitmate if no prior suppose exists, 

				return true; 				-- so the discharge just verified concludes the proof

			else							-- but otherwise the QED is illegitimate

				printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,"\nClaimed 'QED' preceded by undischarged 'Suppose', does not terminate proof\n"]); 
				error_count +:= 1;
				return false; 				-- gotcha, you trickster!

			end if;
			
		end if;	
		
		top_stat := stat_in_discharge;		-- prepare to check for the 'AUTO' case
		rspan(top_stat," \t");  autmatch := rmatch(top_stat,"AUTO");
--print("top_stat: ",top_stat," ",autmatch);
		if autmatch /= "" or top_stat = "AUTO" then 		-- in the 'AUTO' case, just take the negative of the last statement supposed and return
								-- note workaround for rmatch bug; not matching entire string
					
			is_auto := true; 
			stat_supposed := drop_labels(statement_stack(prior_suppose_m1 + 1))(1);			-- get the last previous statement supposed, dropping label if any
			auto_gen_stat := (top_stat + " " + "(not(" + stat_supposed + "))"); 
			return true; 		-- 'true' indicates inference success
--print("<P>statement_stack: ",statement_stack);
		end if;
											
			-- the statements prior to the last statement Supposed, plus the  negative of the last statement Supposed.
		conj2 := form_discharge_conj_nodiagnose("",trimmed_stack := statement_stack(1..prior_suppose_m1) with ("(not(" + statement_stack(prior_suppose_m1 + 1) + "))") with drop_labels(stat_in_discharge)(1));
										-- note: we null the hint to use the unrestricted context in this second step 
										-- note: this routine must remove final semicolon
										-- note: the 'Suppose' itself is now inverted, since it has been refuted by the prior argument
--print("stack_to_last_suppose: ",stack_to_last_suppose,"\nstack_to_last_suppose2: ",stack_to_last_suppose2);

--print("<BR>conj2: ",conj2);
		if (tree := parse_expr(conj2 + ";")) = OM then 
			printy(["<BR>Bad Discharge syntax in conj2:\n",conj2,"\n",statement_stack]); 
			printy(["<BR>stopped due to: syntax error"]);  was_syntax_error := true; stop; 
		end if;

		save_squash_details := squash_details; squash_details := "*" in blob_and_try_hard_tag;
--print("<P>squash_details2: ",squash_details);

		blobbed_tree := blob_tree(tree(2)); 		-- blob the conjunction, its last element having been reversed
--printy(["\ncheck_discharge: ",unicode_unpahrse(blobbed_tree)]); 

		blobbed_tree := boil_down_blobbed(otree := blobbed_tree); 		-- Added March 26,2002: simplify before further processing
		formula_after_blobbing := otree;					-- to generate report when inference is slow
		formula_after_boil_down := blobbed_tree;					-- to generate report when inference is slow

		mb := model_blobbed(blobbed_tree); 
		squash_details := save_squash_details;		-- restore the prior squash_details setting
		
--		printy(["\n    starting discharge verification: ",discharge_stat_no," ",time()]); printy([mb?"    OK-INCONS. AS EXPECTED ",time()]);
		
		if mb = OM then 	-- this is the success case
		
			if optimization_mark or optimize_whole_theorem then 			-- ******* optimization is desired
	
				save_optimizing_now := optimizing_now; optimizing_now := true;			-- set optimization flag to suppress diagnosis;
				print("<BR>lines of context required to draw conclusion of discharge statement on line ",discharge_stat_no,", namely ",hint," ==> ",stat_in_discharge," are: ", search_for_all(trimmed_stack));
				--print(" Optimized pure inference time for this inference step is: ",best_time_so_far);
				optimizing_now := save_optimizing_now;									-- restore optimization flag
			
			end if;

			return true; 

		end if;	

		if mb = "??????? Probably can't verify Discharge statement without excess work ??????? " then 
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nAbandoned attempt to verify blobbed Discharge statement\n",unicode_unpahrse(blobbed_tree)]);
		else

			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nDischarge inference error\n\t", unicode_unpahrse(blobbed_tree)]); 
			printy(["\nPreceding context  is inconsistent, but conclusion does not follow from negative of supposition. Blobbed version is ", 	
								unicode_unpahrse(blobbed_tree)]); 
			printy(["\notree: ",unicode_unpahrse(otree)]);
			printy(["\notree after first simplification: ",unicode_unpahrse(simp1)]); 
			error_count +:= 1;
		end if;

		printy(["\nStatement stack to point of last suppose with negated Suppose and Discharge statement is: "]); 
		for x in statement_stack(1..prior_suppose_m1 + 1) loop printy([x]); end loop; 
		
		return false;			-- note second failure mode
		
	end check_discharge;

				--      ************* Statement citation inference checking ***************
				
				-- The following routine first substitutes the list of replacements supplied as statement citation inference 
				-- parameters into the (ordinarily quantified) body of the statement being cited, following which it checks to see if the
				-- conclusion of the citation inference follows as an elementary conclusion from the substituted result and from
				-- other statements available in the context of the citation inference.
				
	procedure check_a_citation_inf(count,statement_cited,statement_stack,hbk,citation_restriction,piece,statno);		-- check a single citation inference

		span(hbk," \t"); rspan(hbk," :\t"); 						-- remove enclosing whitespace and possible terminating colon

					-- check to see if the statement citation inference is restricted. 
					-- if so, the restriction will appear in parentheses at the right of the statement refererence,
					-- as e.g in x --> Stat66(Stat1,Stat7*) ==> ...
--printy(["hbk: ",hbk]);
		is_restricted := (citation_restriction := citation_restriction?"") /= ""; 			-- is the 'ELEM' phase of the citation inference restricted
		blob_and_try_hard_tag := rspan(citation_restriction,"*+");							-- see if there is a blobbing restriction or a try_hard flag
						
						-- now decompose the citation hint into the expressions to be substituted into the statement
--if piece = OM then printy(["piece: ",statement_cited," ",statement_stack]); end if;
		preflist := piece(1..#piece - 2); rspan(preflist,"\t "); span(preflist,"\t ");  -- clean the list of substitution items  from the hint 
		lp := match(preflist,"("); rp := rmatch(preflist,")");
		if lp = "" then preflist := [preflist]; else preflist := split_at_bare_commas(preflist); end if;
					-- decompose the list into its comma-separated pieces

		statement_cited := join(breakup(statement_cited,"&")," and ");	-- replace ampersands with 'ands' in the statement cited
	 		
		[stat_with_freevars,freevars] := strip_quants(parse_expr(statement_cited + ";")(2),npl := #preflist); 
							-- attempt to strip off required number of quantifiers

		if #freevars < npl then
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nWrong number of variables supplied in statement citation"]);
			printy(["Statement details are: ",hbk," ",statement_cited," ",preflist]); --," ",[stat_with_freevars,freevars]);
			error_count +:= 1;
--if (citation_err_count +:= 1) > 2 then stop; end if;
			return;
		end if;
	
		for form = preflist(jkj) loop			-- parse all the expressions in the list of things to be substituted

			if (paexp := parse_expr(form + ";")) = OM then 
	
				printy(["syntax of item ",jkj," to be substituted in statement is bad, items are ",preflist,	
										", statement cited is ",statement_cited]); 
				printy(["stopped due to: syntax error"]);  was_syntax_error := true;return;
	
			end if;

		end loop;

--printy(["replacement map: ",preflist]);
		replacement_map := {[v,parse_expr(plj + ";")(2)]: v = freevars(j) | (plj := preflist(j)) /= OM};
--printy(["replacement map after: ",{[v,preflist(j)]: v = freevars(j)}]);
		sts := substitute(stat_with_freevars,replacement_map);			-- build the appropriately substituted form of the statement
--printy(["sts: ",sts]);
		
		top_stat := statement_stack(nss := #statement_stack);		-- prepare to check for the 'AUTO' case
		rspan(top_stat," \t"); autmatch := rmatch(top_stat,"AUTO");

		if autmatch /= "" then 		-- in the 'AUTO' case, just take the generated statement and return
			is_auto := true; auto_gen_stat := (top_stat + " " + (gen_stat_body := unparse(sts)));
									-- the generated statement carries the label if any
			
			if ":" in top_stat then				-- labeled case
				rspan(top_stat," \t:"); span(top_stat," \t");			-- strip the label of whitespace and colon
				labeled_pieces(top_stat) := gen_stat_body;				-- replce AUTO by the statement automatically generated
			end if;
			
			return; 
		end if;
		
		conj :=  build_conj(citation_restriction,statement_stack,substituted_statement := unparse(sts));	
							-- build conjunction, either of entire stack or of statements indicated by conjunction restriction
--printy(["conj: ",is_restricted," ",citation_restriction," ",conj]);
				-- try proof by computation as a preliminary, using the conjunct as input, but only in restricted case 

		if is_restricted and (ccv := compute_check(parse_expr(conj)(2))) = false then 		-- the conjunct is inconsistent

			tested_ok := true;		-- note that this was correctly handled
			return;					-- done with this statement

		end if;

if citation_check_count > detail_limit then 
	printy(["check_a_citation_inf: preflist is: ",preflist," statement_cited is: ",statement_cited,
					"\ndesired conclusion is: ",statement_stack(#statement_stack),"\nsubstituted citation is: ",unicode_unpahrse(sts)]);
	printy(["preflist: ",preflist," ",conj]); 
	printy(["stopped due to: excessive detail"]); return;
end if;

		save_squash_details := squash_details; squash_details := "*" in blob_and_try_hard_tag;
								-- details can be squashed during theorem substitution inferences
		test_conj(conj);		-- test this conjunct for satisfiability 
		squash_details := save_squash_details;		-- restore the prior squash_details setting
if citation_check_count > detail_limit then printy(["done test_conj"]); end if;

		if not tested_ok then 
			printy([str(citation_check_count +:= 1)," Checking citation of statement: ",hbk]); 
			error_count +:= 1;
			printy(["statement_cited: ",hbk," ",statement_cited,"\ndesired conclusion: ",
						statement_stack(#statement_stack),"\nsubstituted citation:: ",unicode_unpahrse(sts)]);
		
		elseif optimization_mark or optimize_whole_theorem then 			-- ******** optimization is desired ******** 
--print("<BR>statement_stack: ");for stat in statement_stack loop print("<BR>",stat); end loop;

			save_optimizing_now := optimizing_now; optimizing_now := true;			-- set optimization flag to suppress diagnosis;
			ns := #statement_stack;
			needed_with_substituted := search_for_all(statement_stack(1..ns - 1) +:= [substituted_statement,statement_stack(ns)]);
					-- do the optimization search. The stack supplied carries the cited statement after substitution as its next-to-last component

			if (needed_less_substituted := [k in needed_with_substituted | k /= ns]) = [] then
				print("<BR>Only the statement cited (" + hbk + ") is needed to prove citation result on line ",statno,", namely: ",
							statement_stack(#statement_stack));
				--print(" Optimized pure inference time for this inference step is: ",best_time_so_far);
			else
				print("<BR>The lines of context required for proof of citation of " + hbk + " in line ",statno,", namely: ",
							statement_stack(#statement_stack)," are  " + hbk + " plus ",needed_less_substituted);
				--print(" Optimized pure inference time for this inference step is: ",best_time_so_far);
			end if;
			
			optimizing_now := save_optimizing_now;									-- restore optimization flag
		
		end if;

	end check_a_citation_inf;

				--      ************* Theorem citation inference checking ***************
				
				-- The following routine first substitutes the list of replacements supplied as statement citation inference 
				-- parameters into the (ordinarily quantified) body of the theorem being cited, following which it checks to see if the
				-- conclusion of the theorem citation inference follows as an elementary conclusion from the substituted result and from
				-- other statements available in the context of the citation inference.

	procedure check_a_tsubst_inf(count,theorem_id,statement_stack,hbk,piece,stat_no);		-- check a single tsubst inference
--print("<P>check_a_tsubst_inf labeled_pieces: ",labeled_pieces);
		span(hbk," \t"); rspan(hbk," :\t"); 						-- remove enclosing whitespace and possible terminating colon
		if #hbk = 0 or hbk(#hbk) = "x" then return; end if;		-- bypass citations like 'Txxx'

		blob_and_try_hard_tag := "";			-- but might be reset just below if there is a restriction
		
		if "(" in hbk then 			-- the 'ELEM' phase of the citation inference is restricted
			citation_restriction := rbreak(hbk,"("); rmatch(hbk,"(");  rmatch(citation_restriction,")");
			blob_and_try_hard_tag := rspan(citation_restriction,"*+");			-- see if there is a blobbing restriction or a try_hard flag
--printy(["citation_restriction: ",citation_restriction]);
		else
			citation_restriction := "";			-- citation restriction is null
		end if;
			
		theorem_cited := theorem_map(hbk); 			-- find the theorem which has been cited
		
		if theorem_cited = OM then 			-- look for undefined theorems cited
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nReference to undefined Theorem"]);
			error_count +:= 1; return; 
		end if;
		

		theorem_cited := join(breakup(theorem_cited,"&")," and ");	-- replace ampersands with 'ands' in the theorem cited
		freevs_theorem := find_free_vars(parsed_thm := parse_expr(theorem_cited + ";")(2)); 		-- get the free variables of the 'theorem' part

		firstloc_theorem := {};			-- we will determine the order in which the free variables appear
		
		pieces := [case_change(p,"lu"): p in breakup(theorem_cited,",./?><;'\":][}{\\| \t=-+_)(*&^%$#@!~`") |  p /= ""];
				-- break at all punctucation marks
		for p = pieces(j) loop firstloc_theorem(p) := firstloc_theorem(p)?j; end loop;
		freevs_theorem := merge_sort({[firstloc_theorem(case_change(v,"lu"))?0,v]: v in freevs_theorem | (not check_def_of_symbol(v,theorem_id))}); 
		freevs_theorem := [v: [-,v] in freevs_theorem | not((nv := #v) >= 8 and v(nv - 7..) = "_THRYVAR")];
								-- _THRYVAR variabls should never count as substitutable free variables
						
					
						-- now decompose the citation hint into the expressions to be substituted for the free variables of the theorem
		if piece = "" then 			-- theorem with no free variables
			preflist := [];
		else 						-- theorem with list of expressions to be substituted for its free variables
			preflist := piece(1..#piece - 2); rspan(preflist,"\t "); span(preflist,"\t ");  -- clean the list of substitution items  from the hint 
			lp := match(preflist,"("); rp := rmatch(preflist,")");
			if lp = "" then preflist := [preflist]; else preflist := split_at_bare_commas(preflist); end if;
						-- decompose the list into its comma-separated pieces
		end if;
		
		if #freevs_theorem < #preflist then 
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nWrong number of variables supplied in theorem citation"]); 
			error_count +:= 1;
			printy([" freevs_theorem: ",freevs_theorem," ",preflist,"\nproof line is: ",[hint,stat],"\ntheorem_cited is: ",theorem_cited]); 
		end if;

					-- here we have a theorem citation inference; we check all the substitution items for syntactic validity
			parsed_substs := [];		-- will collect all the parsed items to be substituted
		
			for form = preflist(jj) loop			-- parse all the expressions in the list of things to be substituted

				if (paexp := parse_expr(form + ";")) = OM then 

					printy(["syntax of item ",jj," to be substituted is bad"," hint is ",piece]); 
					printy(["stopped due to: syntax error"]);  was_syntax_error := true;return;
				else

					parsed_substs with:= paexp;
				end if;

			end loop;

		replacement_map := {[varb,if (psj := parsed_substs(j)) /= OM then psj else varb end if]: varb = freevs_theorem(j)};
--print("<BR>freevs_theorem: ",freevs_theorem);
					-- parse the formulae to replace the variables; variables for which no sustituend is given remain unchanged
		stt := substitute(parsed_thm,replacement_map);			-- build the appropriately substituted form of the theorem

		theorem_id_no := theorem_sno_map(theorem_id); cited_theorem_no := theorem_sno_map(hbk);
					-- get the section numbers of the two theorems involved

		if ((cited_theorem_no?100000) >= (theorem_id_no?-1)) then 
			error_count +:= 1;
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\ntheorem cited does not precede theorem in which citation occurs"]); 
		end if;
		
		top_stat := statement_stack(nss := #statement_stack);		-- prepare to check for the 'AUTO' case
		rspan(top_stat," \t"); autmatch := rmatch(top_stat,"AUTO");
		if autmatch /= "" then 		-- in the 'AUTO' case, just take the generated statement and return
			is_auto := true; auto_gen_stat := (top_stat + " " + (gen_stat_body := unparse(stt))); 
			
			if ":" in top_stat then				-- labeled case
				rspan(top_stat," \t:"); span(top_stat," \t");			-- strip the label of whitespace and colon
--print("<BR>labeled_pieces: ",labeled_pieces," ",gen_stat_body);
				labeled_pieces(top_stat) := gen_stat_body;				-- replace AUTO by the statement automatically generated
			end if;
			
			return; 
		end if;
		
		conj_build_start := opcode_count();
		if (conj :=  build_conj(citation_restriction,statement_stack,substituted_statement := unparse(stt))) = OM then
			print("STOPPED by build_conj failure: ",citation_restriction,statement_stack,substituted_statement); stop;
		end if;	
							-- build conjunction, either of entire stack or of statements indicated by conjunction restriction
--print("<BR>conj build time for theorem: ",((oc_after := opcode_count()) - conj_build_start)/oc_per_ms);

		save_squash_details := squash_details; squash_details := "*" in blob_and_try_hard_tag;
					-- details can be squashed during theorem substitution inferences
		test_conj(conj);		-- test this conjunct for satisfiability 
--print("<BR>test_conj time for theorem: ",(opcode_count() - oc_after)/oc_per_ms," ",conj);
		squash_details := save_squash_details;		-- restore the prior squash_details setting
--print("<P>optimization_mark in tsubst_inf: ",optimization_mark?"UNDEFINED"); if optimization_mark notin {true,false} then stop; end if;
		if not tested_ok then 

			error_count +:= 1;
		
		elseif optimization_mark or optimize_whole_theorem then 			-- ******** optimization is desired ******** 

			save_optimizing_now := optimizing_now; optimizing_now := true;			-- set optimization flag to suppress diagnosis;
			ns := #statement_stack;
			
			needed_with_substituted := search_for_all(statement_stack(1..ns - 1) +:= [substituted_statement,statement_stack(ns)]);
					-- do the optimization search. The stack supplied carries the cited statement after substitution as its next-to-last component

			if (needed_less_substituted := [k in needed_with_substituted | k /= ns]) = [] then
				print("<BR>Only the theorem cited (" + hbk + ") is needed to prove theorem citation result on line ",stat_no,", namely: ",
							statement_stack(#statement_stack));
				--print(" Optimized pure inference time for this inference step is: ",best_time_so_far);
			else
				print("<BR>The lines of context needed to prove citation of theorem " + hbk + " in line ",stat_no,", namely: ",
							statement_stack(#statement_stack)," are  " + hbk + " plus ",needed_less_substituted);
				--print(" Optimized pure inference time for this inference step is: ",best_time_so_far);
			end if;
			
			optimizing_now := save_optimizing_now;									-- restore optimization flag
		
		end if;

	end check_a_tsubst_inf;
 
					--      ************* Equality inference checking ***************

			-- The following routine differs from ordinary elementary inference checking principally in that
			-- it uses a slightly expanded and potentially more expensive form of blobbing. 
			-- Prior to this blobbing, the routine searches the conjunct to be tested (using the 'extract_equalities'
			-- call seen below) to find and return all equalities and equivalences present at its top level.
			-- These are passed to the blobbing routine through the global variable 'equalities_rep_map';
			-- the blobbing routine then uses this information to unify the blobs of all items known to be equal 
			-- (and hence of all otherwise identical structures in which these may appear). After this modified
			-- version of blobbing has been applied, the resulting conjuction is tested for satisfiability in the standard way.

	procedure check_an_equals_inf(conj,stat,statement_stack,hint,stat_no);			-- handle a single equality inference
--printy(["check_an_equals_inf: ",conj]);
		if (pec := parse_expr(conj)) = OM then 
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nSyntax error in 'EQUAL' conjunction"]);
			printy(["Conjunction is: ",conj]); 
			error_count +:= 1;
			return;
		end if;
 
 		allow_unblobbed_card := true;			-- don't strong-blob the cardinality operator during equality inferencing
 		allow_blob_simplify := false;			-- turn off the blobbing simplifications
		show_error_now := false;				-- turn off error print in following initial trial
 		equalities_rep_map := extract_equalities(conj); 			-- first try without standardizing bound variables
		test_conj(conj);		-- test this conjunct for satisfiability
		show_error_now := true;
		allow_unblobbed_card := false;			-- turn strong-blobing of the cardinality operator back on
 
		if tested_ok then 				-- restore preceding state and return

			if optimization_mark or optimize_whole_theorem then 			-- ******** optimization is desired ******** 
	
				save_optimizing_now := optimizing_now; optimizing_now := true;			-- set optimization flag to suppress diagnosis;
				allow_unblobbed_card := true;			-- don't strong-blob the cardinality operator during equality inferencing
				
				needed := search_for_all(statement_stack); 		-- do the optimization search
				allow_unblobbed_card := false;					-- turn strong-blobing of the cardinality operator back on
	
				print("<BR>The lines of context (in addition to all extracted equalities) required for proof of equality inference " + hint + " ==> " + stat + " in line ",stat_no," are ",needed);
				--print(" Optimized pure inference time for this inference step is: ",best_time_so_far);
			end if;

			equalities_rep_map := {};		-- blank the equalities_rep_map to avoid use in other inferences
			allow_blob_simplify := true;	-- restore the blobbing simplifications
			return;
		end if;

		conj := unparse(standardize_bound_vars(pec(2))) + ";";
					-- standardize the conjunct

		equalities_rep_map := extract_equalities(conj); 
				-- extract all conjoined equalities and equivalences from the conjunction

--printy(["checking an 'EQUAL' inference: ",stat]); 
--printy(["conj: ",conj]); printy(["after blobbing: ",unicode_unpahrse(blob_tree(parse_expr(conj)(2)))]);
--printy(["equalities_rep_map: ",{[x,unicode_unpahrse(y)]: [x,y] in equalities_rep_map}]);
--printy(["blob_name: ",blob_name]);
		test_conj(conj);		-- test this conjunct for satisfiability

		if not tested_ok then 
			error_count +:= 1;
			printy(["equalities_rep_map is: ",{[x,unicode_unpahrse(y)]: [x,y] in equalities_rep_map}]); 

		end if;

		equalities_rep_map := {};		-- blank the equalities_rep_map to avoid use in other inferences
		allow_blob_simplify := true;	-- restore the blobbing simplifications

	end check_an_equals_inf;
	
	procedure extract_equalities(conj);			-- extract and arrange all top-level equalities and equivalences from a conjunction
				-- the equalities are arranged so as a map which sends all of the blobs in a clss of items found to be equivalent 
				-- into a single one of them, used as a representative of the entire group. 
--printy(["extract_equalities: ",conj]);
		pconj := parse_expr(conj)(2);		-- blob the conjunct, along with the equalities in it 
		eq_tuple := [];
		
		conj_tuple := collect_conjuncts(pconj);			-- collect all conjuncts by descent of top level of conjunct tree
--printy(["conj_tuple: ",[unicode_unpahrse(x): x in conj_tuple]]);		
		blob_name_ctr_was := -1;
		
		for jj in [1..4] loop

			pconj_unblobbed := conj_tuple(1); for conj in conj_tuple(2..) loop pconj_unblobbed := ["ast_and",pconj_unblobbed,conj]; end loop;
								-- reformat as a conjunct
--printy(["pconj_unblobbed: ",unicode_unpahrse(pconj_unblobbed)]);	
			pconj := if jj = 1 then blob_tree(pconj_unblobbed) else blob_tree_in(pconj_unblobbed) end if;
							-- blob the reformatted conjunct to get a compatible blobbing of all terms.
--printy(["pconj: ",unicode_unpahrse(pconj)]);	
														
			eq_tuple +:= collect_equalities(pconj);		-- collect the equalities from the uniformly blobbed conjunct
			
--printy(["--------------- extract_equalities: ",[unicode_unpahrse(t): t in eq_tuple]]);
			downhill_map := {};		-- will map each element in an equality into a smaller equal element
									-- the elements in this map are represented in string form 
			
			for [n1,n2,n3] in eq_tuple | (sn2 := unparse(n2)) /= (sn3 := unparse(n3)) loop			-- iterate over all the equalities
																									-- handling their left and right sides as strings
	 
	 			if  #sn2 < #sn3 or (#sn2 = #sn3 and sn2 < sn3)  then [n2,n3] := [n3,n2]; [sn2,sn3] := [sn3,sn2]; end if;	-- force left-hand side to be larger
				
				if (dn2 := downhill_map(sn2)) = OM then downhill_map(sn2) := sn3; continue; end if;		-- since no previous downhill value
	
				while (dn_further := downhill_map(dn2)) /= OM loop dn2 := dn_further; end loop;
						-- chain down to the ultimate representative of sn2
	
				if dn2 = sn3 then continue; end if;				-- since just confirms prior downhill value
		
				if #dn2 < #sn3 or (#dn2 = #sn3 and dn2 < sn3) then downhill_map(sn3) := dn2; continue; end if;
							-- since in this case the step sn3 -> dn2 is downhill
				   
				downhill_map(dn2) := sn3; 			-- since in this case the path step -> sn3 is downhill
		
			end loop;
	
						-- now map each element in the domain of downhill_map into its ultimate representative
	
			for nd in domain(downhill_map) loop			-- chain down to the ultimate representative
				path_down := [];
				while (dn_further := downhill_map(nd)) /= OM loop
					path_down with:= nd; nd := dn_further; 
				end loop;
					
				for n in path_down loop downhill_map(n) := nd;	end loop;
							-- everything along the path is mapped to this ultimate representative
				
			end loop;
--printy(["downhill_map after: ",downhill_map]);		
			equalities_rep_map := {[x,parse_expr(y + ";")(2)]: [x,y] in downhill_map};
--printy(["blob_name_counter_was: ",blob_name_ctr_was," ",blob_name_ctr]);
			if blob_name_ctr_was = blob_name_ctr then exit; end if;		-- exit if no new blobs have appeared
			blob_name_ctr_was := blob_name_ctr;
		end loop;

		return {[x,parse_expr(y + ";")(2)]: [x,y] in downhill_map};
			-- return the map of each left and right side of an equality into its parsed ultimate representative

	end extract_equalities;

					--      ************* Algebra inference checking ***************

			-- The following routine extends the equality inferencing seen just above by adding
			-- a mechanism which recognizes elementary algebraic identities. To this end, it is made aware
			-- (via declarations which invoke the procedure 'post_alg_roles' of the logic_elem_supplement' file)
			-- of families of algebraic operations, each including aassociative and commutative addition
			-- and multiplication operations for which multiplication distributes over addition. 
			-- Given this information, the routine seaches the syntax tree of any conjuction presented to it 
			-- for all 'algebraic nodes', i.e. nodes headed by an operator known to belong to some algebraic
			-- family of operators, and below this node for the largest possible subtree of nodes all of which
			-- belong to the same algebraic family F as the top node. This subtree can be regarded
			-- as defining an algebraic expression whose base level 'variables' are whatever non-algebraic expressions
			-- are found at its bottom nodes. We then generate a collection of equalities and auxilary conditions.
			-- An auxiliary condition is generated for each  each non-algebraic expression exp found
			-- at the bottom nodes of one of the algebraic subtrees just described, and must state that this expression
			-- is a member of the ring associated with the top level of the subtree. If all of these auxiliary
			-- conditions can be seen to hold in the logical context of the algebraic inference,
			-- then an equality identifying the algebraic subtree with its canonical, fully expanded and simplified 
			-- algebraic form is generated and added to the conjuction to be tested for satisfiabily. 
			-- After addition of all such equalities, the resulting conjuction is passed to our standard
			-- equality-inferencing procedures.

	procedure check_an_algebra_inf(conj,stat);			-- handle a single algebraic inference
		-- this routine is passed two strings, one the conjunctive hypothesis for an algebraic deduction, the 
		-- other the desired conclusion. 
		-- We begin by collecting all the algebraic subexpressions (algebraic nodes) from both 
		-- the hypothesis and the conclusion supplied.
		-- Then we construct all the algebraic equalities arising from the standardization these of algebraic nodes,
		-- add these to the hypothesis available, and then use equality inference. perhaps later also fields) transitively
		-- and is able to draw conclusions asserting the membership of an element in a ring or field

			-- collect the ring membership assertions at the top conjunctive level of the conjunctive hypothesis
			-- Note: this will include various standard membeship statements for all known rings
		if (tree := parse_expr(conj)) = OM then 
			print("conj fails to parse; algebra inference aborted. ", conj);
			error_count +:= 1;
			return "failed\n";
		end if;
		
		dma := domain(memb_asserts := find_ring_members(tree(2)));
		
--print("check_an_algebra_inf: ",conj," ",stat);
		algnodes := find_algebraic_nodes(tree);				-- find the algebraic nodes in the tree of the hypothesis
--print("memb_asserts after find_algebraic_nodes: ",memb_asserts," algnodes: ",algnodes," ring_from_addn: ",ring_from_addn," ",conj);		
--print("<P>algnodes in hypothesis for all known algebraic operators: ",[[x,unparse(y)]: [x,y] in algnodes]);

											-- process the algebraic nodes, and if their bottons are known to belong to the relevant ring, 
											-- add membership assertions for them to memb_asserts
		
		for plus_op in dma loop			-- handle all relevant algebraic sets one after another, starting with their identifying '+' signs
			
			mapo := memb_asserts(plus_op);		-- get the membership assertions for the algebraic set defined by the plus_op
			ring_for_plus_op := ring_from_addn(plus_op);		-- get the ring corresoponding to the plus_op
			
			known_memb_stgs := {unparse(memb_assertion(2)): memb_assertion in mapo};	
								-- get the intially known membership assertios for the current ring

			for alg_node in (algnodes_for_this := algnodes(plus_op)?{}) loop
						-- iterate over all the algebraic nodes in the hypothesis for the current ring

				anbs := alg_node_bottoms(alg_node,plus_op);
										-- get the bottom level blobs, whose top operators do not belong to the current agebraic set

							-- see if any of these blobs involve subexpressions not known too be ring members, in 
							-- view of the available membership hypotheses and the membership conclusions just drawn from them,
							-- provided that the blob is not a known constant associated with the '+' opartor and ring being processed 
				if (bad_anbs := {stg_anb: anb in anbs | (stg_anb := unparse(anb)) notin known_memb_stgs 
						and alg_of(stg_anb) /= plus_op}) = {} then		-- allow for ring constants like '1'
									-- insert a membership assertion for the algebraic node into the available set of membership assertions

					memb_asserts(plus_op) := memb_asserts(plus_op) with ["ast_in",alg_node,ring_for_plus_op];

				end if;

			end loop;
			
		end loop;

											-- find the membership assertions made at the top conjunctive level of the conclusion
											-- Note: this will also include various standard membership statements for all known rings
											-- this is a mapping form the '+' signs of rings to the membership statements found
		if not is_tuple(stat) then 			-- stand-alone testing
			concluding_memb_asserts := find_ring_members(tree2 := parse_expr(stat + ";")(2));
			algnodes2 := find_algebraic_nodes(tree2);				-- find the algebraic nodes in the tree of the conclusion
--print("stat: ",unparse(tree2)," algnodes2: ",[unparse(x): x in algnodes2]);
		else
			concluding_memb_asserts := find_ring_members(parse_expr(drop_labels(stat(1))(1) + ";")(2));
							-- extract stat from tuple into which it was put and find top level membership assertions
			algnodes2 := {};
		end if;
		
				-- note: these are returned as a map from the collection of all '+' operators of known rings to the
				-- parsed subtree of nodes algebraic for this ring, i.e. nodes whose top operator is a known algebraic operator of the ring
		for x in domain(algnodes2) loop algnodes(x) := algnodes(x)?{} +  algnodes2(x); end loop;
								-- now algnodes holds all the algebraic nodes from hypothesis and conclusion, grouped by ring

		dma2 := domain(concluding_memb_asserts);		-- this is the set of '+' signs of all known rings
		good_algnodes := bad_algnodes := [];			-- in case following loop is skipped entirely
		
		rspan(conj,"; \t");			-- remove semi from conj before it is used to build extended conjunct. Thi is present in standalone case
									
		extended_conjunct := if is_tuple(stat) then conj  -- Note: 'stat' will only be a tuple if this routine is operating in server mode
				else "((" + conj + ") and (not(" + stat + ")));" end if; 				-- algebraic equalities will be added to this progressively

--print("<P>concluding_memb_asserts: ",concluding_memb_asserts," algnodes: ",algnodes);
		memb_assertions_remaining_to_to := [];  -- membersip assertions in the conclusion which may requive an equality deduction
		
		for plus_op in dma loop			-- handle all relevant algebraic sets one after another, starting with their identifying '+' signs
			
			mapo := memb_asserts(plus_op);		-- get the membership assertions for the algebraic set defined by the plus_op
			
			known_memb_stgs := {unparse(memb_assertion(2)): memb_assertion in mapo};
						-- the string variants of available statements concering items known to belong to the ring associated with the '+' sign
--print("<P>known_memb_stgs: ",known_memb_stgs," <BR>mapo ",mapo," memb_asserts ",memb_asserts);		

--printy(["known members of ring: ",#known_memb_stgs," ",known_memb_stgs," concluding_memb_asserts: ",{unicode_unpahrse(x): x in concluding_memb_asserts(plus_op)?{}}]); 
			 		-- now examine all membership assertions in the conclusion being tested, 
			 		-- and if they follow from the collection of membership conjuncts available from the hypothesis,
			 		-- add them to the set of membership assertions available; otherwise diagnose them 
			
			for memb_assertion in concluding_memb_asserts(plus_op)?{} loop  -- iterate over all these membership assertions

				anbs := alg_node_bottoms(memb_assertion(2),plus_op);
										-- get the bottom level blobs, whose top operators do not belong to this agebraic set
--print("anbs: ",anbs);
							-- see if any of these blobs involve subexpressions not known to be ring members, in 
							-- view of the available membership hypotheses and the membership conclusions just drawn from them,
							-- provided that the blob is not a known constant associated with the '+' opartor and ring being processed 
				if (bad_anbs := {stg_anb: anb in anbs | (stg_anb := unparse(anb)) notin known_memb_stgs 
						and alg_of(stg_anb) /= plus_op}) /= {} then		-- allow for ring constants like '1'
												-- if so, algebraic deduction fails
--if number_of_statement_theorem = OM then print("****** Error verifying step:"); continue; end if;	-- allow for testing outside main environment
					memb_assertions_remaining_to_to with:= memb_assertion;
				else						-- otherwise we accept this membership assertion into the set of membership assertions being collected 

					memb_asserts(plus_op) := memb_asserts(plus_op) with memb_assertion;

				end if;

			end loop;		-- at this point we have collected all the membership statements available for the algebraic deduction to be made
							-- this we are doing for each of the known rings, one by one

--print("memb_asserts: ",memb_asserts);
					
			algnodes_for_this := algnodes(plus_op)?{}; 		-- access the algebraic nodes, from the hypothesis and conclusion, for this algebraic operator set

--if (na := #(after := {unparse(ma(2)): ma in memb_asserts(plus_op)} - known_memb_stgs)) /= 0 then printy(["new members of ring: ",after," ",na]);	end if;		
--print("<P>algnodes_for_this: ",plus_op," ",[unicode_unpahrse(algnode): algnode in algnodes_for_this],"<BR>membrelns after: ",{unicode_unpahrse(ma(2)): ma in memb_asserts(plus_op)});	

							-- filter out those algebraic nodes whose base elements are not known to be in the ring of the current plus_op 
			good_algnodes := bad_algnodes := []; 		-- will separate
			
			for algnode in algnodes_for_this loop

				anbs := alg_node_bottoms(algnode,plus_op);
				if (bad_anbs := {stg_anb: anb in anbs | (stg_anb := unparse(anb)) notin known_memb_stgs 
						and alg_of(stg_anb) /= plus_op}) /= {} then		-- allow for ring constants like '1'
					bad_algnodes with:= algnode;		-- algnode is bad
				else							
					good_algnodes with:= algnode;		-- otherwise accept this algnode as good
				end if;
			end loop;
						-- now generate an equality for each good algebraic node
						-- this equality sets the node equal to its standardized form

--print("algnodes_for_this: ",algnodes_for_this," good_algnodes: ",good_algnodes," bad_algnodes: ",bad_algnodes," known_memb_stgs: ",known_memb_stgs);
			alg_equalities := [generate_algebraic_identity(algnode): algnode in good_algnodes];
--print("<BR>alg_equalities and memb_asserts: ",[unparse(x): x in alg_equalities],"\ngood_algnodes: ",[unparse(x): x in good_algnodes],"\nmemb_asserts: ",[unparse(x): x in memb_asserts(plus_op)],"\nbad_algnodes: ",[unparse(x): x in bad_algnodes],"\n\n");
				-- add all the membership statements available for the current ring, together with all the generated identities
				-- standardizing the algebraic nodes, to the conjuct. This is done progressively for the known rings, one after another 
			extended_conjunct := join([unparse(item): item in memb_asserts(plus_op)] + [unparse(item): item in alg_equalities] + [extended_conjunct]," and ");
				
		end loop;

				-- now that all available algebraic identities have been added to the conjunct,
				-- try an equality inference
--printy(["extended_conjunct: ",extended_conjunct]);	
--print("extended_conjunct: ",extended_conjunct);
		rspan(extended_conjunct,"; \t"); extended_conjunct +:= ";";				-- force a single semicolon at the end prior to parsing
				-- and now apply equality processing to the extended conjunct
		if (peec := parse_expr(extended_conjunct)) = OM then 			-- an unexpected parsing problem
			print("extended_conjunct in algebra inference fails to parse: ",extended_conjunct); error_count +:= 1; return "failed\n";
		end if;
		
		extended_conjunct := unparse(standardize_bound_vars(peec(2))) + ";";
					-- standardize the extended conjunct
		allow_blob_simplify := false;						-- turn off the blobbing simplifications
		equalities_rep_map := extract_equalities(extended_conjunct);
				-- extract all conjoined equalities from the extended conjunction

--printy(["checking an 'ALGEBRA' inference: ",stat]); 
--printy(["conj: ",conj]); printy(["after blobbing: ",unparse(blob_tree(parse_expr(conj)(2)))]);
--printy(["equalities_rep_map: ",{[x,unparse(y)]: [x,y] in equalities_rep_map}]);
--printy(["blob_name: ",blob_name]);

--print("checking an 'ALGEBRA' inference: ",conj," desired conclusion is ",stat); --," extended_conjunct ",extended_conjunct); 
--print("conj: ",conj,"conj after blobbing: ",unparse(blob_tree(parse_expr(conj)(2))));
--print("equalities_rep_map: ",{[x,unparse(y)]: [x,y] in equalities_rep_map});
--print("blob_name: ",blob_name);

		test_conj(extended_conjunct);		-- test the extended conjunct for satisfiability

		if not tested_ok then 
			error_count +:= 1;
			printy(["equalities_rep_map is: ",equalities_rep_map]); 
			printy(["extended_conjunct is: ",extended_conjunct]);
			printy(["bad_algnodes: ",[unparse(item): item in bad_algnodes]]);
			return "failed\n";
		end if;
--printy(["extended_conjunct is: ",extended_conjunct]);   -- DEBUGGING ONLY

		equalities_rep_map := {};		-- blank the equalities_rep_map to avoid use in other inferences
		allow_blob_simplify := true;	-- restore the blobbing simplifications
		return "verified\n";
		
	end check_an_algebra_inf;

	procedure alg_node_bottoms(tree,plus_op);	-- return list of algebraic node base elements for given node
	
		var list_of_bottoms := [];				-- will be collected by recursive workhorse
	
		alg_node_bottoms_in(tree,plus_op);		-- call recursive workhorse
--printy(["alg_node_bottoms: ",tree," ",list_of_bottoms]);		
		return list_of_bottoms;
		
		procedure alg_node_bottoms_in(tree,plus_op);		-- recursive workhorse

			if is_string(tree) and alg_role_of(tree) /= "ring" then 		-- collect twigs if reached
				list_of_bottoms with:= tree; return; 
			end if;
			
			[n1,n2,n3] := tree;

			if n1 = "ast_of" then			-- we have a 'Rev' function, hich is a function and not an operator (in the scenario source)
						-- here we check the function symbol, which comes in the second position
						
				if alg_of(n2) /= plus_op or #(n3?[]) > 2 then list_of_bottoms with:= tree; return; end if;
												-- collect non-algebraic nodes reached (non-algebraic function or more than 1 parameter)
				alg_node_bottoms_in(n3(2),plus_op);		-- check the argument, skipping the prefixed 'ast_list'
				
			else 				-- otherwise we must have a binary algebraic operator written as an infix
				
				if alg_of(n1) /= plus_op then
					list_of_bottoms with:= tree; return; 	
				end if;

				alg_node_bottoms_in(n2,plus_op);		-- process algebraic subnodes recursively
				if n3 /= OM then alg_node_bottoms_in(n3,plus_op); end if; 		-- allow for monadic operator case
			
			end if;
			
		end alg_node_bottoms_in;
 	
	end alg_node_bottoms;

			--      ************* Simplification inference checking ***************

			-- The following routine handles set theoretic simplification, of the kind invoked by Ref's 
			-- 'SIMPLF' inferencing primitive. 
			 
	procedure check_a_simplf_inf(statement_stack,stat,stat_no,hint,restr);	-- handle a single set-theoretic standardization inference
		-- we find all the equalities arising from the standardization of nodes,
		-- add these to the start of the conjunct, and then use equality inference

		conj := form_elem_conj(restr,statement_stack);			-- build conjunction to use in ELEM-type deductions

		if (pec := parse_expr(conj)) = OM then
			printy(["\n****** Error verifying step: "+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							 "\nSyntax error in 'Simplf' conjunction"]);
			printy(["Conjunction is: ",conj]);
			error_count +:= 1;
			return;
		end if;

		pec_2 := pec(2);
				-- find all the setformer and quantifier nodes within the tree
--print("simplify_builtins: ",simplify_builtins);
--		pec_2 := simplify_builtins(pec_2);		-- added June 24; simplify builtin oerators to further standardize 
												-- elements withing the setformers and qunatifiers to be processed
				
		setfs_and_quants := find_setformers_and_quants(tree := standardize_bound_vars(pec_2));
--printy(["********* SIMPLF used to deduce: ",stat]);
				
				-- form equalities or equivalences as appropriate. Such an iequality is formed for
				-- each setformer an quantifier node in the tree, and states that the expression
				-- represented by the subtree is equal to its simlified form
		equalities := [if item(1) in {"ast_genset","ast_genset_noexp"} then ["ast_eq",item,simpitem] 
							else ["DOT_EQ",item,simpitem] end if: item in setfs_and_quants | 
						unparse(simpitem := simplify_setformer(item)) /= unparse(item)];
		
		if equalities = [] then 			-- SIMPLF cannot be applied
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nSIMPLF inappropriate in proof step"]);
			printy([" since there are no simplifiable setformers or quantifiers"]);
			printy(["setformers and quantifiers found: ",[unparse(item): item in setfs_and_quants]]);
			error_count +:= 1;
			return;
		end if;
					-- adjoin all these auxiliary equalities to the conjunct to be tested for satisfiability
		equalities_clause := "(" + join([unparse(item): item in equalities],") and (") + ")";
		extended_conjunct := equalities_clause + " and " + conj;
--print("extended_conjunct before standardization: ",extended_conjunct);	
		extended_conjunct := unparse(standardize_bound_vars(parse_expr(extended_conjunct)(2))) + ";";
					-- standardize the extended conjunct

				-- and now apply equality processing to the extended conjunct
		allow_unblobbed_card := true;			-- don't strong-blob the cardinality operator during equality inferencing
		allow_blob_simplify := false;			-- turn off the blobbing simplifications
		equalities_rep_map := extract_equalities(extended_conjunct);
				-- extract all conjoined equalities from the extended conjunction

--printy(["checking an 'SIMPLF' inference: ",stat]); 
--printy(["conj: ",conj]); printy(["after blobbing: ",unparse(blob_tree(parse_expr(conj)(2)))]);
--printy(["equalities_rep_map: ",{[x,unparse(y)]: [x,y] in equalities_rep_map}]);
--printy(["blob_name: ",blob_name]);
		test_conj(extended_conjunct);		-- test the extended conjunct for satisfiability

		if not tested_ok then 

			error_count +:= 1;
			printy(["equalities are: ",[unparse(item): item in equalities]]);
			printy(["equalities_rep_map is: ",equalities_rep_map]); 
			printy(["extended_conjunct is: ",extended_conjunct]);
			printy(["setformers and quantifiers found: ",[unparse(item): item in setfs_and_quants]]);

		elseif optimization_mark or optimize_whole_theorem then 			-- ******** optimization is desired ******** 

			save_optimizing_now := optimizing_now; optimizing_now := true;			-- set optimization flag to suppress diagnosis;
			
			needed := search_for_all_w_extra(statement_stack,equalities_clause);
					-- do the optimization search, passing the equalities_clause as an 'extra'

			print("<BR>The lines of context required for proof of simplification inference " + hint + " ==> " + stat + " in line ",stat_no," are ",needed);
			--print(" Optimized pure inference time for this inference step is: ",best_time_so_far);

		
		end if;

		allow_unblobbed_card := false;			-- restore strong-blobbing of the cardinality operator

		equalities_rep_map := {};		-- null to avoid interference with other inferences 

		allow_blob_simplify := true;		-- restore the blobbing simplifications
 
 	end check_a_simplf_inf;

			--      ************* Use_def inference checking ***************

			-- The following routine handles Ref Use_def inferences. It begins by finding the definition of the symbol being used, 
			-- which must belong either to the THEORY within which the inference appears, or within one of the ancestral
			-- theories of that THEORY. The variables and the right-hand side of the definition are then examined, 
			-- and all the free variables and function of predicate symbols appearing in the right-hand side are collected. 
			-- If the function or predicate being defined is among them, the definition is recursive, 
			-- and is handled by the special procedure 'recursive_definition_OK' seen below. Otherwise we simply check to 
			-- verify that all of the free variables of the definition's right-hand side appear as parameters of the 
			-- function or predicate symbol being defined, and that all the other function, predicate, and constant symbols
			-- appearing on the right have been defined previously, ither in the THEORY containing the definition
			-- or in one of its ancestor THEORYs, Note that for this purpose sumbols assumed by a theory must count
			-- as symbols defined in it.

	procedure lookup_def_of_symbol(symb_referenced,theorem_id); 		-- look up the definition of a symbol referenced in a given theorem

		thry_of_th := theory_of(theorem_id);			-- get the theory of the current theorem
				
		symb_referenced := 				-- conver the prefix characters of special operator names to 'name_underscore' form
					if symb_referenced in {"range","domain","pow"} then "ast_" + symb_referenced
					elseif  #symb_referenced >= 1 and symb_referenced(1) in "¥•" then "DOT_" + case_change(symb_referenced(2..),"lu")	-- infixes
					elseif  #symb_referenced >= 1 and symb_referenced(1) = "~" then "TILDE_" +  case_change(symb_referenced(2..),"lu")
					elseif  #symb_referenced >= 1 and symb_referenced(1) = "@" then "AT_" +  case_change(symb_referenced(2..),"lu")
					elseif  #symb_referenced >= 1 and symb_referenced(1) = "#" then case_change("ast_nelt","lu")
					elseif  symb_referenced = "[]" then case_change("ast_enum_tup","lu") 
					else case_change(symb_referenced,"lu") end if;
			
		res := [get_symbol_def(symbol_defined := if symb_referenced in {"ast_range","ast_domain","ast_pow"} then 
					case_change(symb_referenced,"lu") else symb_referenced end if,thry_of_th),symb_referenced,symbol_defined];
--print(["lookup_def_of_symbol symb_referenced: ",symb_referenced," theorem_id: ",theorem_id," res: ",symb_referenced," ",symbol_defined," ",res]);		 
		return res;
		
	end lookup_def_of_symbol;

	procedure get_def_of_symbol(symb_referenced,theorem_id);		-- get definition of indicated symbol of theorem

		[def_of_symbol,symb_referenced,symbol_defined] := lookup_def_of_symbol(symb_referenced,theorem_id); 		-- look up the definition of a symbol referenced in this theorem
		
		if (sec_of_symbdef := theorem_sno_map("D" + case_change(symb_referenced,"lu"))) = OM and (nsr := #symb_referenced) > 8 and symb_referenced(nsr - 7..nsr) = "_THRYVAR"
				 and def_of_symbol /= OM then 			-- we have a '_THRYVAR' defined in the current theory

			null;			-- suppress diagnostic for _thryvar's defined in theorem of theory

		elseif (sec_of_symbdef?1000000) > (sec_of_thm := theorem_sno_map(theorem_id)?0) then

			printy(["\n****** Error verifying step: "+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
			"\nsymbol referenced ",symb_referenced," is defined after use: ",sec_of_symbdef," ",sec_of_thm]); 
			error_count +:= 1;
			printy(["symbol_defined: ",symbol_defined," ",theorem_sno_map]); 
			return;

		end if;

		if def_of_symbol = OM then 
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nUse_def error, undefined symbol",
								"\nsymbol ",symbol_defined," is referenced but undefined"]); 
			error_count +:= 1;
			return;
		end if;
	
		return def_of_symbol;
		
	end get_def_of_symbol;

	procedure check_def_of_symbol(symb_referenced,theorem_id);		-- determine whether indicated symbol of theorem is defined

		[def_of_symbol,symb_referenced,symbol_defined] := lookup_def_of_symbol(symb_referenced,theorem_id); 		-- look up the definition of a symbol referenced in this theorem
		
		if (sec_of_symbdef := theorem_sno_map("D" + case_change(symb_referenced,"lu"))) = OM and (nsr := #symb_referenced) > 8 and symb_referenced(nsr - 7..nsr) = "_THRYVAR"
				 and def_of_symbol /= OM then 			-- we have a '_THRYVAR' defined in the current theory

			return true;			-- symbol is defined

		elseif (sec_of_symbdef?1000000) > (sec_of_thm := theorem_sno_map(theorem_id)?0) then

			return false;		-- symbol not yet defined

		end if;

		if def_of_symbol = OM then 
			return false;
		end if;
	
		return true;
		
	end check_def_of_symbol;
			
	procedure check_a_use_def(statement_stack,stat,theorem_id,hint,stat_no);	-- check a single Use_def inference
--print("check_a_use_def: ",statement_stack);
		tail := hint(9..); symb_referenced := break(tail,")"); 
		symb_referenced := case_change(symb_referenced,"lu");			-- find the symbol whose definition is referenced
		if symb_referenced(1) = "¥" then symb_referenced := "DOT_" + symb_referenced(2..); end if;
		if symb_referenced(1) = "•" then symb_referenced := "DOT_" + symb_referenced(2..); end if;
		if symb_referenced(1) = "@" then symb_referenced := "AT_" + symb_referenced(2..); end if;
		if symb_referenced(1) = "~" then symb_referenced := "TILDE_" + symb_referenced(2..); end if;
		
		symb_referenced := lowcase_form(symb_referenced)?symb_referenced;
		
		match(tail,")"); break(tail,"("); rspan(tail," \t");			-- extract any context hint which may attach to the Use_def
		context_hint := if tail = "" then "" else "ELEM" + tail end if; -- if a parenthesized contruct remains, reconstruct it as an "ELEM" hint
		
		if (def_of_symbol := get_def_of_symbol(symb_referenced,theorem_id)) = OM then print("Undefined symbol in Use_def check"); return; end if;
		
		[def_vars,def_body] := def_of_symbol;			-- get the list of definition arguments and the parsed definition right side
		[free_variables,function_symbols] := find_free_vars_and_fcns(def_body);	
--print("<P>[free_variables,function_symbols]: ",[free_variables,function_symbols]," ",symb_referenced);

		if symb_referenced in function_symbols then		-- definition is recursive; check that it has required form
--print("<P>recursive definition[free_variables,function_symbols]: ",[free_variables,function_symbols]);
			stat_tree := parse_expr(drop_labels(stat)(1) + ";")(2);
--printy([(is_tuple(stat_tree) and ((st1 := stat_tree(1)) = "ast_eq" or st1 = "DOT_EQ"))," ",stat_tree]);
--printy([is_tuple(conc_left := stat_tree(2)) and conc_left(1) = "ast_of" and conc_left(2) = symb_referenced]);
--printy([use_def_act_args := conc_left(3)(2..)," ",def_vars," ",def_body]);

			if not (is_tuple(stat_tree) and ((st1 := stat_tree(1)) = "ast_eq" or st1 = "DOT_EQ")
				and (is_tuple(conc_left := stat_tree(2)) and conc_left(1) = "ast_of" and conc_left(2) = symb_referenced)
					and #(use_def_act_args := conc_left(3)(2..)) = #def_vars) then
				printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nIllegal recursive Use_def inference in proof step",
						"\nStatement does not have required equality/equivalence form and right number of left-hand arguments "]);
				 error_count +:= 1;
				 return;
			else			-- conclusion is of legal form; make substitutions for argument of recursive definition
			
				subst_map := {[vj,use_def_act_args(j)]: vj = def_vars(j)};
				reconstructed_def := [stat_tree(1),["ast_of",symb_referenced,["ast_list"] + def_vars],def_body]; 
				substituted_def := unparse(substitute(reconstructed_def,subst_map));
						
						-- now conjoin the substituted_def and the negative of the statement,and test it for satisfiability 
				conj := "(" + substituted_def + ") and (not(" + drop_labels(stat)(1) + "));";
				test_conj(conj);		-- test this conjunct for satisfiability
					
				if not tested_ok then 
					printy(["Checking recursive Use_def(",symb_referenced,") inference: ",stat," substituted definition is: ",substituted_def]);
					printy(["Recursive 'Use_def' inference failed in: ",theorem_id," ",stat]); 
					error_count +:= 1;
				end if;
			
			end if;
--printy(["use of recursive definition: "]);			
			return;		-- done with this case (use of recursive definition)

		end if;

		equalities_rep_map := {};				-- no equalities used in this inference mode
		allow_blob_simplify := true;			-- blob simplification and bound var standardization turned on 
						-- otherwise handle like ELEM deduction, 
						-- but replace all occurrences of referenced symbol by the defining formula

		conj := debug_conj := form_elem_conj(context_hint,statement_stack);
				-- build conjunction to use in ELEM-type deductions; if the context is restricted, pass it as an 'ELEM' hint
				-- the hint passed should either be an empty string or have the form appropriate to "ELEM", namely ELEM(Stat..,Stat..,..)				

		mismatched_args := false;	-- will be set to true if a mismatacheed argument number is detected
		
		conj := replace_fcn_symbol(orig_conj := parse_expr(conj)(2),symb_referenced,def_vars,def_body); -- expand the definition within the conjunction

--print("<BR>orig_conj: ",unparse(orig_conj)," conj: ",unparse(conj)," symb_referenced: ",symb_referenced);		
 
		if mismatched_args then				-- issue diagnois and return
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
						+ number_of_statement_theorem + "\n\t", statement_being_tested,
						"\nmismatched argument number in definition use",
					"\nvariables in definition are ",mismatched_symbvars," but definition use is ",mismatched_expn]);
			 error_count +:= 1;
			 return;
		end if; 
		
--printy(["after replace_fcn_symbol conj is: ",unparse(conj)," orig_conj is: ",unparse(orig_conj)," symb_referenced is: ",symb_referenced," def_vars: ",def_vars," def_body: ",unparse(def_body)]);
		if show_details then printy(["\nconj: ",conj]); end if;

		test_conj(conj);		-- test this conjunct for satisfiability
		
		if not tested_ok then 

			print(["Checking Use_def(",symb_referenced,") inference: ",stat," definition is: ",unparse(def_body)]);
			print(["'Use_def' inference failed in: ",theorem_id," ",stat]); error_count +:= 1;
			print("conj tested in use_def was: ",unparse(conj)); 

		elseif optimization_mark or optimize_whole_theorem then 			-- ******** optimization is desired ******** 
		
			save_optimizing_now := optimizing_now; optimizing_now := true;			-- set optimization flag to suppress diagnosis;
						-- replace the statement_stack entries by their sustituted versions
			statement_stack := [unparse(replace_fcn_symbol(parse_expr(drop_labels(stack_elt + ";")(1))(2),symb_referenced,def_vars,def_body)): 
																		stack_elt in statement_stack];
												-- and now treat as ELEM deduction
			print("<BR>Lines of context required for proof of Use_def statement ",stat_no,", namely ",
				hint," ===> ",statement_stack(#statement_stack)," are ",search_for_all(statement_stack));
			--print(" Optimized pure inference time for this inference step is: ",best_time_so_far);
			optimizing_now := save_optimizing_now;									-- restore optimization flag

		end if;
 
 	end check_a_use_def;
 
 	procedure get_symbol_def(symb,thry);			-- get the definition of a symbol, in 'thry' or any of its ancestors

 		thry_list := [thry];
 		
 		while (thry := parent_of_theory(thry)) /= OM loop thry_list with:= thry; end loop;
 		
 		if exists thry in thry_list | (the_def := symbol_def(thry_and_symb := thry + ":" + symb)) /= OM then
  			left_of_def_found := left_of_def(thry_and_symb);		-- get the left par of the symbol if there is any
--print("<BR>thry_and_symb: ",thry_and_symb," ",left_of_def_found?"UNDEF");
 			return the_def; 
 		end if;
 		
 		return OM;
 		
 	end get_symbol_def;
 	
	--      ************* Suppose-not inference checking ***************

			-- The following routine verifies that the Suppose_not statement appearing at the very start of a proof
			-- is a proper equivalent to the negative of the theorem asserted. As presently arranged, 
			-- the procedure handles all of the procedures and Suppose_not in a stated range by iterating over them.
			-- The free variables of the Theorem to which each Suppose_not attaches are found in left-to-right order,
			-- the variables supplied in the Suppose_not are substituted for them, and the resulting formula negated 
			-- to produce a formula S. We also check to verify that all of these variable are distinct. Finally,
			-- we use our back-end inferencing mechanisms to check that the stated form of the Suppose_not is equivalent
			-- to the substituted formula S.

	procedure check_suppose_not(supnot_trip,pno,th_id);				-- check a suppose_not inference, represented by a triple
		
		init_logic_syntax_analysis(); 						-- initialize for logic syntax-tree operations
															-- (probably during an earlier run) and consists of pairs [negated_form,discharge_result];
															-- here 'negated_form' is the negation (with possible substitution of constants for the universally 
															-- quantified variables of the original theorem which is 'discharge_result') of 'discharge_result'.
		
		if supnot_trip = OM then 
			error_count +:= 1;
			printy(["\n****** Error verifying step: " + 1 + " of theorem " 
					+ pno + "\n\t", str(statement_being_tested),"\nMissing suppose not\n"]);
			return; 
		end if;

		[replacement_vars,sn_form,theorem_form] := supnot_trip; 				-- break the triple into the 'suppose' and the 'theorem' part
		thm_no := pno;

		thry_of_th := theory_of(th_id);			-- get the theory of the current theorem
		if (aac := assumps_and_consts_of_theory(thry_of_th)) = OM then
			print("Stopped since theory of theorem ",th_id?"UNDEFINED"," namely ",thry_of_th?"UNDEFINED_THEORY"," seems to have no defined assumps_and_consts"); stop;
		end if;
		[assumed_symbols,-] := aac;
		
		assumed_vars := {case_change(x,"lu"): x in assumed_symbols | "(" notin x};			-- the set of simple assumed variables of the theory of the theorem
		
		statement_being_tested := "Suppose_not(" + replacement_vars + ") ==> " + sn_form;		-- reconstruct the Suppose_not statement, for reporting
		
		sn_form := join(breakup(sn_form,"&")," and "); theorem_form := join(breakup(theorem_form,"&")," and ");	-- replace ampersands with 'ands'
		freevs_theorem := find_free_vars(parse_expr(theorem_form + ";")(2)); 		-- get the free variables of the 'theorem' part
		freevs_theorem := [v: v in freevs_theorem | v notin assumed_vars];
				-- the assumed variables of the theory of the theorem do not count as free variables of the theorem
--print("***** thry_of_th: ",thry_of_th," ",freevs_theorem," assumed_vars: ",assumed_vars);		
		
		vars_suppose := breakup(replacement_vars," ,;"); 			-- get the replacement variables supplied with the 'suppose' part
	
		firstloc_theorem := firstloc_suppose := {};		-- will determine the first appearance of each free variable, so as to locate them in left_to_right order
	
		pieces := breakup(sn_form,",./?><;'\":][}{\\| \t=-+_)(*&^%$#@!~`");
		for p = pieces(j) | p /= "" loop pc := case_change(p,"lu"); firstloc_suppose(pc) := firstloc_suppose(pc)?j; end loop;
	
		pieces := breakup(theorem_form,",./?><;'\":][}{\\| \t=-+_)(*&^%$#@!~`");
		for p = pieces(j) | p /= "" loop pc := case_change(p,"lu"); firstloc_theorem(pc) := firstloc_theorem(pc)?j; end loop;

					-- get the tuple of free variables in the statement to be deduced by the discharge and in the 'supposed' form
		freevs_theorem := merge_sort({[firstloc_theorem(case_change(v,"lu"))?0,v]: v in freevs_theorem}); 
																			
		freevs_theorem := [v: [-,v] in freevs_theorem | not((nv := #v) >= 8 and v(nv - 7..) = "_THRYVAR")];		-- eliminate the thryvars, which are not free
	
		freevs_theorem := [v in freevs_theorem | lookup_def_of_symbol(v,th_id)(1) = OM];		-- eliminate the symbols with definitions, which are not free
						
						-- eliminate the assumed variables of the theory of this theorem, which are not free either
	
		if #freevs_theorem = #vars_suppose then			-- both formulae contain the same number of free variables, so we can set up a substitution map
			
			subst_map := {[v,vars_suppose(j)?v]: v = freevs_theorem(j)};		-- set up the substitution map which should generate the 'suppose not' clause
																				-- from the discharge_result being deduced
			theorem_tree := parse_expr(theorem_form + ";")(2); 
			theorem_is_imp := theorem_tree(1) = "DOT_IMP";			-- see if the theorem is an implication
			
			theorem_subst := unparse(tsub := substitute(theorem_tree,subst_map));
					-- get the parse tree of the theorem being deduced and make the inferred substitution in it
--print("<P>check_suppose_not:: ",sn_form," ",#(sn_form)," ",trim(sn_form) = "AUTO"," ",theorem_subst);
			
			if trim(sn_form) = "AUTO" then 			-- return the negated theorem, or its sligly transoformed version if it is an implicatioon
				if not theorem_is_imp then 
					return "(not(" + theorem_subst + "))"; 
				else			-- the cited theorem is an implication, so return its negation as 'a and (not b)'
					return "(" + unparse(tsub(2)) + ") and (not (" + unparse(tsub(3)) + "))"; 
				end if;
			end if;		-- accept the suppose_not without further ado, returning the negated thoeorem. In all other cases, OM will be returned
--printy(["before negated inequivalence"]); 

			if running_on_server then		-- use the PC character for equivalence
				negated_inequivalence := "not((not(" + sn_form + ")) •eq (" + theorem_subst + "));";
							-- form what should be an impossible inequivalence
			else 		-- use the Mac character for equivalence
				negated_inequivalence := "not((not(" + sn_form + ")) •eq (" + theorem_subst + "));";	
							-- form what should be an impossible inequivalence (Mac version)
			end if;
--print("negated_inequivalence: ",negated_inequivalence);			
			ne_tree := parse_expr(negated_inequivalence)(2);				-- parse it		
									-- test the negated inequivalence to see if it has a model

			save_allow_unblobbed_fcns := allow_unblobbed_fcns; allow_unblobbed_fcns := false;
			bt := blob_tree(ne_tree); 
			formula_after_blobbing := otree;					-- to generate report when inference is slow
			formula_after_boil_down := ["No_boildown"];			-- to generate report when inference is slow

			mb := model_blobbed(bt);

			allow_unblobbed_fcns := save_allow_unblobbed_fcns;			-- restore

			if mb /= OM then 
				error_count +:= 1;
--print(unparse(ne_tree),"\n",unparse(bt)," mb: ",mb);
				printy(["\n****** Error verifying step: " + 1 + " of theorem " 
					+ thm_no + "\n\t", statement_being_tested," ",unparse(bt)," ",negated_inequivalence," ",running_on_server,"\nSuppose_not inference failed\n"]);
			end if;		
	
		else 		-- mismatch between number of free variables of theorem and number of substitueends in the Suppos-not

			error_count +:= 1;
			printy(["\n****** Error verifying step: " + 1 + " of theorem " 
				+ thm_no + "\n\t", statement_being_tested,"\nSuppose_not inference has mismatched variable set: ",
					freevs_theorem," ",vars_suppose," ",suppose_not_tup,"\n"]);
		end if;
	
	end check_suppose_not;
 
				--      ************* Monotonicity inference checking ***************

			-- The following routine handles inferences by monotonicity. It can make use of previously proved 
			-- information concerning the monotonicity properties of particular functions and predicates,
			-- supplied to it by declarations of the kind illustrated  by the example DECLARE monotone("Un,++;Pow,+;#,+;•PLUS,+,+").
			-- The routine calls the underlying 'monotone_infer' procedure (found in the logic_elem_supplement file), 
			-- to which only formulae of one of the forms 'e1 incs e2', 'e1 •incin e2', 'e1 = e2', 'e1 •imp e2',
			-- and 'e1 •eq e2' can be submitted. Hence our routine can only handle formulae of this kind.
			-- See the lenthy comment preceding 'monotone_infer' to see hw it expands the staement submitted
			-- to it to the modified statement which the following procedure then tests for saisfiability using our standard
			-- back-end satisfiability-testing routines. 

	procedure check_a_monot_inf(count,statement_stack,hbk,theorem_id);	-- check a single Set_monot inference

		if "(" in hbk then 			-- the 'ELEM' phase of the citation inference is restricted
			inference_restriction := rbreak(hbk,"(");  rmatch(inference_restriction,")"); 
		else
			inference_restriction := "";			-- citation restriction is null
		end if;
--printy(["sts::: ",unparse(parse_expr(drop_labels(statement_stack(nss := #statement_stack))(1) + "];")(2)));
		sts := "(" + unparse(monotone_infer(parse_expr(drop_labels(statement_stack(nss := #statement_stack))(1) + ";")(2))) + ")";
									-- invert the final statement
--printy(["sts: ",sts]);		
		conj :=  build_conj(inference_restriction,statement_stack(1..nss - 1) with sts,OM);	
							-- final OM parameter indicates no cited theorem or statement
							-- build conjunction, either of entire stack or of statements indicated by conjunction restriction

		test_conj(conj);		-- test this conjunct for satisfiability 
--printy(["tested_ok: ",tested_ok," ",conj]);
		if not tested_ok then 
			printy(["Conjunct formed using expanded Set_monot-statement fails unsatisfiability check ***"]); 
			error_count +:= 1;
			printy(["Citation check number: ",citation_check_count," error number: ",citation_err_count +:= 1]);
		end if;
		
	end check_a_monot_inf;
 
				--      ************* Loc_def inference checking ***************
	procedure check_a_loc_def(statement_stack,theorem_id);	-- check a single Loc_def inference, or conjoined collection thereof
	

		conjoined_statements := [drop_labels(stat)(1): stat in statement_stack];
		loc_def_tree := parse_expr((def_stat := conjoined_statements(ncs := #conjoined_statements)) + ";");
						-- get the last stacked stement, which is the definition itself, and parse it

		if loc_def_tree = OM then 
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nBad loc_def syntax"]); 
			error_count +:= 1; return; 
		end if;

		loc_def_tree := loc_def_tree(2); [n1,-,-] := loc_def_tree;
		
		if n1 /= "ast_and" and n1 /= "AMP_" then return check_a_loc_def_in(statement_stack,theorem_id); end if;
					-- treat using workhorse routine if not a conjunct
					
					-- if we have several conjoined definitions, walk the tree to collect them into a tuple
		tup := conj_to_tuple(loc_def_tree);
					-- then unparse the elements of this tuple, and substitute them sucessively for the
					-- last element of the stack, and passs them to the workhorse for checking
		otup := tup; tup := [unparse(x): x in tup];
		save_error_count := error_count;
		nss := #statement_stack; save_stack_top := statement_stack(nss);
--print("loc_def_tree: ",loc_def_tree," tup: ",tup);		
		for stg in tup loop

			statement_stack(nss) := stg;
			check_a_loc_def_in(statement_stack,theorem_id);		-- call the workhorse

			if 	error_count > save_error_count then 	-- stop at the first detected error,
				return;
			end if;
			
		end loop;

		statement_stack(nss) := save_stack_top;			-- restore the stack

					-- if there are none, check that all the symbols defined are different.
		list_of_targets := [x(2): x in otup];
		
		if #{x: x in list_of_targets} /= #list_of_targets then			-- some taget variable is duplicated 
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nIllegal repeated target variable in local definition, these must all be distinct."]); 
			error_count +:= 1; return; 
		end if;
		
	end check_a_loc_def;

	procedure conj_to_tuple(tree);			-- walks a syntax tree of a conjunct, converting it to a tuple
		
		var the_tup;
		
		the_tup := [];  -- initialize
		conj_to_tuple_in(tree);		-- call workhorse
		return the_tup;
		
		procedure conj_to_tuple_in(tree);			-- workhorse: walks a syntax tree of a conjunct, converting it to a tuple
			
			[n1,n2,n3] := tree;			-- unpack
			if n1 /= "ast_and"  and n1 /= "AMP_" then the_tup with:= tree; return; end if;		-- just collect non-conjuncts

			conj_to_tuple_in(n2); conj_to_tuple_in(n3);			-- otherwise walk the thwo branches of the conjuunct
			
		end conj_to_tuple_in;
		
	end conj_to_tuple;
	
			-- The following simple routine handles Ref inferences of Loc_def type. It checks
			-- to ensure that the statement passed to it has the form of an equality getween a 
			-- left-hand side wich is simply a previously unused function or predicate symbol
			-- with distinct arguments, and a right-hand expression having no other free variables and
			--    
			
	procedure check_a_loc_def_in(statement_stack,theorem_id);	-- check a single Loc_def inference
--	procedure check_a_loc_def(statement_stack,theorem_id);	-- check a single Loc_def inference
		-- we check that the left side of the local definition is a simple, argument-free variable never used previously
		-- that no free variables appear on the right hand side of the local definition, which must be a valid 
		-- expression, and that all other function and predicate symbols appearing in the right hand side 
		-- have been defined previously, either in the THEORY containing the Loc_def or in one of its ancestor THEORYs. 
		-- Note that no symbol appearing  on the right which has been defined in this way should count as
		-- a free variable of the right hand side.

		conjoined_statements := [drop_labels(stat)(1): stat in statement_stack];
		loc_def_tree := parse_expr((def_stat := conjoined_statements(ncs := #conjoined_statements)) + ";");

--		if loc_def_tree = OM then 
--			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
--							+ number_of_statement_theorem + "\n\t", statement_being_tested,
--							"\nBad loc_def syntax"]); 
--			error_count +:= 1; return; 
--		end if;

		loc_def_tree := loc_def_tree(2);
		
		if not is_tuple(loc_def_tree) or loc_def_tree(1) /= "ast_eq" or not is_string(def_var := loc_def_tree(2)) then
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
						"\nLocal definition does not have the required form"]);
			printy(["Local definition " + def_stat + " must be simple equality with a variable not used previously ***"]);
			error_count +:= 1; return;
		end if;

		if def_var in find_free_vars(loc_def_tree(3)) then 
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
								"\nLocal definition cannot be recursive ***"]);
			error_count +:= 1; return;
		end if;

		conj_tree := parse_expr("(" + join(conjoined_statements(1..ncs - 1),") and (") + ");")(2);		-- build into parsed conjunction

		if def_var in find_free_vars(loc_def_tree(3)) then 
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"Bad defined variable in local definition",
							"\nDefined variable of local definition ",def_stat," has been used previously in theorem ",theorem_id," ***"]);
			error_count +:= 1; return;
		end if;
	
				-- we must also check that the taget variable of the local definition does not appear within this theorem as a function
				-- symbol, and that it is not a defined variable, either in the current theory or in any of it ancestral theories.
				
				
	end check_a_loc_def_in;

	--      ************* Assumption inference checking for theorems within theories ***************

			-- The following routine handles assumption inference checking for theorems within theories.
			-- We simply collect all the assumptions of the THEORY containing the 'Assump' inference and of all the
			-- ancestor THEORYs of that, and then verify that the stated conclusion of the 'Assump'
			-- is a valid consequence of their conjunction.
				
 	procedure check_an_assump_inf(conj,stat,theorem_id);	-- handle a single 'Assumption' inference
		
		thy := theory_of_inf := theory_of(theorem_id);			-- get the theory to which the inference belongs
		assumps := assumps_and_consts_of_theory(thy)(2);				-- get the assumptions of the theory
--printy(["theorem_id,thy: ",theorem_id," ",thy," assumps: ",assumps]);
									-- include the assumptions of each ancestor theory
		while (thy := parent_of_theory(thy)) /= OM loop
			assumps +:=  assumps_and_consts_of_theory(thy)(2);
		end loop;
		
							-- conjoin negative of statement with collected assumptions
		conj := "(" + join(assumps,") and (") + ") and (not(" + drop_labels(stat)(1) + "));";
--printy(["conj-assumps: ",conj]);
		if show_details then printy(["\nconj: ",conj]); end if;
		test_conj(conj);		-- test this conjunct for satisfiability
		
		if not tested_ok then 
			printy(["'Assump' inference failed in: ",theorem_id," ",stat]); 
			error_count +:= 1;
		end if;

 	end check_an_assump_inf;
	

			--      ************* THEORY-application inference checking (outside proofs) ***************

			-- The our next group of routines collective handle all allowed forms of proof by THEORY application. 
			-- Four bsic routines are provided, one to handle non-Skolem APPLY inferences at the Theorem level 
			-- (hence outside of any proof), and another to handle APPLY inferences within proofs. 
			-- Two additional routines are provided to handle Skolem inferences, which are treated as if they wre 
			-- applications of a built-in theory called 'Skolem'.
			
			-- Only applications of internal Theories are handled by this group of routines. Collections of theorems
			-- supplied by external verification systems, which Ref also allows, are handled by other routines seen below.
			
			-- Theory applications at the Theorem level consist of an APPLY clause of the ordinary form followed 
			-- immediately by a standard-form Theorem statement, which has however no other proof than the APPLY clause itself.
			-- The justifing clauses required to validate for such APPLY must be found among the 20 preceding theorems
			-- in the same THEORY as the APPLY. 

			-- Theory applications internal to proofs consist of an APPLY clause of the ordinary form followed 
			-- by an ordinary Ref formula. The justifing clauses required to validate for such APPLY must be found in 
			-- the normal legical context of the APPLY inference.

			-- Skolem applications at the Theorem level consist of an APPLY(..) Skolem... clause followed 
			-- immediately by a standard-form Theorem statement, which has no other proof than the  
			-- APPLY(..) Skolem... clause itself. The new function symbols defined such a 'Skolem APPLY'
			-- (none of which can have been defined previously)	are shown as replacement for nominal variables
			-- of the form vnnn_thryvar	nominally defined within the built-in theory 'Skolem'. The
			-- conclusion of such a Skolem inference must be a universally quantified statement involving only 
			-- previously defined functions and constants, along with the symbols listed as being defined 
			-- by the Skolem inference. We check that the conclusion of the Skolem inference is a universally
			-- quantified formula whose bound variables appear without attached limits, and that each occurence of
			-- every function defined by the Skolem inference has simple variables as arguemts, these
			-- variables always being a prefix of the quanitied variables found at the start of the Skolem conclusion.
			-- Once this condition has been verified, the Skolem conclusion can be converted to a Skolem assumption 
			-- replacing every appearance of each such function by a bound variable having he same name as the function,
			-- inserting an existentially quantified occurence of this variable at the appropriate point in the 
			-- list of universal quantifiers originally prefixed to the Skolem conclusion. For eample, a  
			-- Skolem conclusion originally having a form like
			
			--		(FORALL x,y,z | ... f(x,y)...g(x,y,z)..f(x,y)..h(x)..)
			
			-- converts in this way to the Skolem assumption

			--		(FORALL x | (EXISTS h | (FORALL y | (EXISTS f | 
			--				(FORALL z | (EXISTS g | ... f...g..f..h..))))))

			-- Once this Skolem assumption has been constructed in the manner described, justifing clauses validating it
			-- must be found among the 20 preceding theoremsin the same THEORY as the APPLY.  

			-- Skolem applications internal to proofs consist of an APPLY clause of the ordinary form followed 
			-- by a universally quantified Ref formula involving only previously defined functions and constants, 
			-- along with the symbols listed as being defined by the Skolem inference. A Skolem assumption is constructed 
			-- from this Skolem conclusion in much the same way as for Skolem applications at the Theorem level,
			-- Hover the justifing clauses validating a Skolem application internal to a proof must be found in 
			-- the normal legical context of the Skolem inference.		

 	procedure check_an_apply_inf(next_thm_name,theory_name,apply_params,apply_outputs);	
 					-- handle a single, non-skolem, theory-application inference
		-- To handle these inferences, we first separate out the defined-parameter list and the substitution-list of the 
		-- APPLY. These are coarsely validated (prior to the call of this routine), and then the apply_params are further
		-- validated by verifying that their individual parts have forms corresponding to valid definitions.
		
							-- perform comprehensive syntactic check of APPLY statements
		if (res := test_apply_syntax(theory_name,apply_params,apply_outputs)) = OM then return OM; end if; 
		[assumps_and_consts,apply_params_parsed] := res;
					-- We must also check that none of the apply_outputs, which are defined by the APPLY, 
					-- have been defined previously, either in the present theory or in any of its ancestral theories.
					-- Definitions made at this top level count as 'permanent' definitions in whatever theory is current,
					-- but because their syntactic forms are different from those of algebraic or recursive definitions, 
					-- these definitions are not accessible via Use_def, but only through citation of the APPLY-generated 
					-- theorem wich introduces them. The same is true for APPLY statemets in proofs wich define
					-- symbols, except that these symbols are locall to the proof. But within the proof they are
					-- subject to the same non-repetion rules as described above.
					-- Noe also that thse rules als apply to Loc_def definitions inside proofs.
					
					
					-- next we generate the 'required hypothesis' for the theory application and check that it is available
					-- in the context of the application. This is done by verifying that it follows by ELEM from the conjunction of 
					-- the 20 theorems preceding the APPLY. (In the unusual situations in which this is not the case, it may
					-- be necessary to insert an artificial Theorem simply to satisfy this condition.

		hypotheses_list := assumps_and_consts(2);			-- the list of all hypotheses of the theory being applied

		if hypotheses_list /= [] then  		-- the theory being applied has hypotheses, whose availability must be checked

			required_hypothesis := build_required_hypothesis(hypotheses_list,apply_params_parsed);

						-- verify that the 'required hypothesis (parsed_conj)' thus generated is available in the context of the APPLY
			if test_conclusion_follows(next_thm_name,required_hypothesis) = OM then return OM; end if;
 		end if;

		return conclusion_follows(theory_name,apply_outputs,apply_params_parsed,theorem_map(next_thm_name));
						-- verify that the theorem following the (global) apply is a valid consequence of the substituted theorems of the theory
	
	end check_an_apply_inf;

	procedure check_apply_syntax(text_of_apply);			-- special processing for global definitions by "APPLY"
--			printy(["text_of_apply: ",text_of_apply]); -- FILL IN ************
	end check_apply_syntax;

			--      ************* APPLY conclusion checking (for THEORY application outside proofs) ***************

	procedure test_conclusion_follows(next_thm_name,desired_concl);		-- test desired conclusion of a top-level APPLY inference
				-- this must follow from nearby prior theorems, plus assumptions of theory containing the APPLY
								
		if definitions_handle = OM then check_definitions(-10000,100000); end if;	-- make sure that the symbol_def map is available	 
				-- 'symbol_def' maps symbol names, e.g. "Set_theory:Z", to their definitions
	
		read_proof_data();	-- ensure that the list of digested_proofs,   
								-- the theorem_map of theorem names to theorem statements,
								-- the theorem_sno_map_handle of theorem names to theorem statements,
								-- its inverse inverse_theorem_sno_map,
								-- the theory-related maps parent_of_theory,theors_defs_of_theory,assumps_and_consts_of_theory
								-- defs_of_theory,defsymbs_of_theory,defconsts_of_theory,
								-- and the theory_of map sending each theorem and definition into its theory
								-- the theorem_list, and the theorem_name_to_number (list of theorem names in order, and inverse)
								-- are all available
	
		ntn := theorem_name_to_number(next_thm_name);
		current_theory := theory_of(next_thm_name);				-- the theory containing the APPLY
 		assumps_of_current_theory := assumps_and_consts_of_theory(current_theory)(2);				-- these assumptions are also available

		ancestor_theories := [current_theory]; cur_th := current_theory;				-- construct the chain of ancestor theories
		while (cur_th := parent_of_theory(cur_th)) /= OM loop			-- of the theory containing the theorem
			ancestor_theories with:= cur_th;
		end loop;
	
		prior_theorems_list := [[thry,tln]: n in [(ntn - 21) max 1..ntn - 1] | (thry := theory_of(tln := theorem_list(n))) in ancestor_theories]; 
--printy(["prior_theorems_list: ",prior_theorems_list," ",allowed_theories]);	
		prior_theorems_list := [fully_quantified(thry,theorem_map(tln)): [thry,tln] in prior_theorems_list]; 
 					-- form universally quantified version of the theorems in this list.
--printy(["prior_theorems_list:: "]); for x in prior_theorems_list loop printy([x]); end loop;		
			-- now verify that the required hypothesis is a consequence of an available nearby theorem
		 
		conj_to_test := build_conj("",(assumps_of_current_theory + prior_theorems_list) with desired_concl,OM);

 		test_conj(conj_to_test);		-- test this conjunct for satisfiability 
--printy(["tested_ok: ",tested_ok]);
		if not tested_ok then 
			printy(["testing hypothesis availability for APPLY or Skolem inference: ",next_thm_name," ",time()]); 
			error_count +:= 1;
			printy(["Conjunct formed using available nearby theorems fails unsatisfiability check ***"]); return OM;
		end if;
	
		return true;
		
	end test_conclusion_follows;

			--      ************* THEORY-application inference checking (within proofs) ***************
	
 	procedure check_an_apply_inf_inproof(thm_name,stat_stack,theory_name,apply_params,apply_outputs);	
 					-- handle a single, non-skolem, theory-application inference
		-- To handle these inferences, we first separate out the defined-parameter list and the substitution-list of the 
		-- APPLY. These are coarsely validated (prior to the call of this routine), and then the apply_params are further
		-- validated by verifying that their individual parts have forms corresponding to valid definitions.
		
							-- perform comprehensive syntactic check of APPLY statements
		if (res := test_apply_syntax(theory_name,apply_params,apply_outputs)) = OM then return OM; end if; 
		[assumps_and_consts,apply_params_parsed] := res;
		
					-- next we generate the 'required hypothesis' for the theory application and check that it is available
					-- in the context of the application. This is done by verifying that it follows by ELEM from the conjunction of 
					-- the 20 theorems preceding the APPLY. (In the unusual situations in which this is not the case, it may
					-- be necessary to insert an artificial Theorem simply to satisfy this condition.

		hypotheses_list := assumps_and_consts(2);			-- the list of all hypotheses of the theory being applied

		if hypotheses_list /= [] then  		-- the theory being applied has hypotheses, whose availability must be checked

			required_hypothesis := build_required_hypothesis(hypotheses_list,apply_params_parsed);

						-- verify that the 'required hypothesis (parsed_conj)' thus generated is available in the context of the APPLY
			conj_to_test := build_conj("",stat_stack with required_hypothesis,OM);

			squash_details := true;			-- apply inferences always use coarse blobbing
			
 			test_conj(conj_to_test);		-- test this conjunct for satisfiability 
--printy(["tested_ok: ",tested_ok]);
			if not tested_ok then 
				extra_message := [" Failed hypothesis availability check for APPLY or Skolem inference in proof ",thm_name," conjuction tested was: ",unicode_unpahrse(conj_to_test)," ",time()]; 
				return OM; error_count +:= 1; 
			end if;
 
		end if;
		
		res := conclusion_follows(theory_name,apply_outputs,apply_params_parsed,stat_stack(#stat_stack));
		if res = true then return res; end if;
						-- verify that the theorem following the (global) apply is a valid consequence
						-- of the substituted theorems of the theory
		
		printy(["Required hypotheses are available but conclusion does not follow from application of theory; ",theory_name,"  res is: ",res?"OM"]);
		extra_message := ["Required hypotheses are available but conclusion does not follow from application of theory ",theory_name," ; res is: ",res?"OM"];
		return OM;				-- return OM  in the failure case
		
	end check_an_apply_inf_inproof;

			--      ************* Syntax checking for THEORY application ***************
	
	procedure test_apply_syntax(theory_name,apply_params,apply_outputs);
							-- comprehensive syntactic check of APPLY statements
		-- replacements must be supplied for all the assumed symbols of the theory being applied.
		-- The theory being applied must have a chain of ancestors which is a prefix of the theory
		-- open at the point of the APPLY.
		-- the pairs being_defined->defining_formula which appear are subject to the same restrictions as
		-- would apply to definitions of the form being_defined := defining_formula. That is,
		-- (i) each left-side must be a function symbol (or constant) followed by non-repeating simple arguments.
		-- (ii) every defining_formula must be a syntactically valid formula all of whose free variables and functions 
		-- are either parameters of the left-hand side or   

--printy(["check_an_apply_inf: ",theory_name," ",apply_params," ",apply_outputs]); 
--printy(["**** Unknown inference mode: APPLY used to deduce: ",stat]); error_count +:= 1; 
		-- Once all of the preceding checks have been passed, we start to build the list of conclusions_available
		-- from the THEORY being applied. This consists of all the theorems of the THEORY not containing any symbol
		-- defined within it, other than assumed symbols and symbols listed in the apply_outputs list.
		-- The assumed symbols are replaced by their defining expressions, in exactly the same way as for 
		-- a Use_def inference, using the 'replace_fcn_symbol' operation. Then all the symbols listed in the apply_outputs list,
		-- and all the assumed constants, are replaced by their new names. This gives a defied formula which we append to the
		-- conj supplied, which is then tested for consistency.
		
		-- We then note that all of the replacement symbols in the defined-parameter list, none of which
		-- may have been defined previously, are defined by the APPLY statement.

		init_proofs_and_theories();
			-- ensure initialization of digested_proofs, parent_of_theory,theors_defs_of_theory,assumps_and_consts_of_theory		
		apply_params_parsed := {};			-- decompose the apply_params at their '->' separator, and check vaildity
 
 		assumps_and_consts := assumps_and_consts_of_theory(theory_name);		-- get the data relevant to the theory
 		
		if assumps_and_consts = OM then 
			printy(["****** Error: Cannot find THEORY ",theory_name," apply_outputs are specified as: ",apply_outputs," next_thm_name is: ",next_thm_name]); return OM;
		end if; 

--printy(["assumps_and_consts: ",assumps_and_consts]);
 		nargs_of_assumed_symbol_name := {};		-- will build map of assumed symbol names of theory into their number of arguments
 		for assmd_symb_w_args in assumps_and_consts(1) loop
 			symb_name := case_change(break(assmd_symb_w_args,"("),"lu");
 			nargs_of_assumed_symbol_name(symb_name) := if assmd_symb_w_args /= "" then #breakup(assmd_symb_w_args,",") else 0 end if;
 		end loop; 

 		ancestor_theories := [];			-- find the ancestor theories of the theory being applied
 		theory_nm := theory_name;
 		while (parent_theory := parent_of_theory(theory_nm)) /= OM loop
 			ancestor_theories := [parent_theory] + ancestor_theories; theory_nm := parent_theory;
 		end loop;

 		theorems_and__defs_of_theory := theors_defs_of_theory(theory_name);

		for stg in apply_params loop

			orig_stg := stg;			-- save for diagnosis
			
			front := break(stg,"-"); nxt_char := match(stg,"->");		-- stg is now he part of orig_stg following the -> mark; front is the part before

			if nxt_char = "" then printy(["****** Error: missing '->' in APPLY replacement list: ",apply_params," ",next_thm_name]); return OM; end if; 
			
			if (front := parse_expr((orig_front := front) + ";")) = OM then  	-- otherwise the front must be a simple function name, 
																			 	-- and the back 'stg' an expression with no more 
				printy(["****** Error: illformed assumed_symbol part in APPLY ",theory_name," replacement list: ",orig_stg," ",orig_front," ",next_thm_name]); 
				return OM;
			end if; 

			if (back := parse_expr(stg + ";")) = OM then  
				printy(["****** Error: illformed symbol-definition part in APPLY ",theory_name," replacement list: ",stg," ",next_thm_name]); 
				return OM;
			end if; 

			if (not is_string(front := front(2))) and (not front(1) = "ast_of") then
				printy(["****** Error: function not supplied for assumed_symbol part in APPLY ",theory_name," replacement list: ",orig_front," ",front," ", next_thm_name]);
				return OM;
			end if;

			if (not is_string(front)) then 

				[-,replacement_symbol_name,front_args] := front;
				front_args := front_args(2..);			-- drop the prefixed 'ast_list'

				if exists fa in front_args | not is_string(fa) then 
					printy(["****** Error: illegal compound arguments in symbol-definition part of APPLY ",theory_name," replacement list: ",orig_stg," ",next_thm_name]); return OM;
				end if;

				if (nfa := #front_args) > #{x: x in front_args} then 
					printy(["****** Error: repeated arguments in symbol-definition part of APPLY ",theory_name," replacement list: ",orig_stg," ",next_thm_name]); return OM;
				end if;

						-- we now check that every replacement_symbol_name is an assumed symbol of the theory being applied
				if (naa := nargs_of_assumed_symbol_name(replacement_symbol_name)) = OM then 
			 		printy(["****** Error: replacements can only be specified for assumed symbol of theory: ",theory_name," ",replacement_symbol_name,
			 		" is not an assumed symbol of this theory: ",orig_stg," ",next_thm_name]); return OM;
			 	end if;
								-- check the number of arguments supplied for the replacement_symbol_name
				if (nfa /= naa) then 
					printy(["****** Error: wrong number of arguments supplied for ",replacement_symbol_name,": ",orig_stg," which has ",naa," arguments, but ",nfa," were supplied"]);  
					return OM;  
				end if;

						-- and that no replacement_symbol_name appears twice
				if apply_params_parsed(replacement_symbol_name) /= OM then 
			 		printy(["****** Error: only one replacement can be specified for assumed symbol ",replacement_symbol_name," of theory: "," ",theory_name]);
			 		return OM;
			 	end if;

				apply_params_parsed(replacement_symbol_name) := [front_args,back(2)];
							-- capture the parameters and the right_hand_side definition for the assumed_symbol 

						-- check that the list of ancestors of the theory being applied is contained in the list of ancestors of the current theory ***TODO***

						-- check that every free variable and function name appearing in the back part of the definition is defined ***TODO***
						-- in the theory containing the APPLY or in one of its parent theories 

			else			-- a parameterless constant has been supplied

				replacement_symbol_name := front;
						-- check that replacement_symbol_name is an assumed symbol of the theory being applied
				if (naa := nargs_of_assumed_symbol_name(replacement_symbol_name)) = OM then 
			 		printy(["****** Error: replacements can only be specified for assumed symbol of theory: ",theory_name,". ",replacement_symbol_name,
			 		" is not an assumed symbol of this theory: ",orig_stg," ",next_thm_name]); return OM;
			 	end if;
								-- check the number of arguments supplied for the replacement_symbol_name
				if (0 /= naa) then printy(["****** Error: arguments missing for ",replacement_symbol_name,": ",orig_stg]);  return OM; end if;
	
						-- and that no replacement_symbol_name appears twice
				if apply_params_parsed(replacement_symbol_name) /= OM then 
			 		printy(["****** Error: only one replacement can be specified for assumed symbol ",replacement_symbol_name," ",next_thm_name]); return OM;
			 	end if;

				apply_params_parsed(replacement_symbol_name) := [[],back(2)];
						
			end if;

--printy(["front,back: ",front(2)," ",back(2)]);			
		end loop;
						-- now check that every assumed symbol of the theory being applied has a replacement_symbol_name
		if (no_defs_for := {symb: [symb,-] in nargs_of_assumed_symbol_name | apply_params_parsed(symb) = OM}) /= {} then
			printy(["****** Error: no replacement has been specified for the following assumed symbols: ",no_defs_for," ",next_thm_name]); 
			return OM;
		end if;

--printy(["assumps_and_consts: ",assumps_and_consts]);
--printy(["ancestor_theories: ",ancestor_theories]);
--printy(["nargs_of_assumed_symbol_name: ",nargs_of_assumed_symbol_name]);	
--printy(["theorems_and__defs_of_theory: ",theorems_and__defs_of_theory]);
		
		 return [assumps_and_consts,apply_params_parsed];			-- at this point the APPLY has passed all its syntactic checks.

	end test_apply_syntax;

			--      ************* Analysis of APPLY hints within proofs ***************

	procedure decompose_apply_hint(hint);		-- decomposes the 'hint' portion of an APPLY statement
					-- returns [theory_name,apply_params,apply_outputs]
					-- the split_apply_params is a list of pairs [assumed_fcn(vars),replacement_expn]
					-- the apply_outputs is the colon-and-comma punctuated string defining the functions to be generated
-- printy(["decompose_apply_hint: ",hint]);
 		rspan(hint,"\t ");				-- remove possible whitespace
		hint_tail := hint(6..); apply_outputs := break(hint_tail,")"); match(hint_tail,")"); match(apply_outputs,"("); 
--printy(["apply_outputs: ",apply_outputs," ",hint_tail]);		
		theory_name := break(hint_tail,"("); span(theory_name," \t");
		match(hint_tail,"("); tail_end := rbreak(hint_tail,")"); attached_thmname := rbreak(tail_end,">");
		span(attached_thmname," \t"); rspan(attached_thmname," \t");
		apply_params := hint_tail; rmatch(apply_params,")");
		apply_params := split_at_bare_commas(apply_params);
		
		split_apply_params := [];	-- split the apply parameters at "->" and collect the resulting pairs

		for ap in apply_params loop

			ap_seg := segregate(ap,"->");

			if exists (segp = ap_seg(j)) | segp = "->" then 
				split_apply_params with:= [+/ap_seg(1..j - 1),+/ap_seg(j + 1..)];
			end if;
			
		end loop;
		span(theory_name," \t"); rspan(theory_name," \t"); 			-- trim whitespace
		
		return [theory_name,apply_params,apply_outputs,if #attached_thmname = 0 then "" else "T" end if + attached_thmname]; 
		
	end decompose_apply_hint;			

			--      ************* Finding the variables to be substituted of APPLY _thryvars ***************

	procedure get_apply_output_params(apply_outputs,hint);	-- decompose and validate apply_outputs, returning them as a tuple of pairs
			-- this routine expects its apply_outputs parameter to be a comma-separated list of colon-separated pairs thryvar:replacement
			-- derived from an APPLY hint. It chcks he format of the hint crudely, and verifies that no thryvar occurs reepatedly in the hint.
			-- if all of these crude tests are passed, return the list of pairs of thryvars and their replacements 
			
		split_apply_outputs := breakup(breakup(apply_outputs,","),":");		-- break into a tuple of pairs
--printy(["split_apply_outputs: ",split_apply_outputs]);

				-- check that we have only pairs, whose first component has the required xxx_thryvar form
		if exists p = split_apply_outputs(j) | #p /= 2 or (p1 := p(1))(1) notin "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz¥•"
							 or not_all_alph(p1) or (np1 := #p1) < 9 or p1(np1 - 7..) /= "_thryvar" then
			printy(["****** Error: illformed defined-variables list in APPLY. ",p," ",hint]); return OM;
		end if;
		
				-- check that the second components of these pairs have characters legitimate in function and/or operator names
		if exists p = split_apply_outputs(j) | (p2 := p(2))(1) notin "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz¥•"
				 or not_all_alph(p2) then
			printy(["****** Error: illformed defined variable in APPLY. ",p(2)," ",hint]); return OM; 
		end if;
		
		numoccs := {};
							-- now check that none of the thryvar names supplied occur more than once
		for [thryvar,-] = split_apply_outputs(j) | substvar /= OM loop
			numoccs(substvar) := (numoccs(substvar)?0) + 1;
		end loop;

		if exists n = numoccs(v) | n > 1 then 
			printy(["****** Error: Repeatedly defined thryvar variable in APPLY. ",v," ",hint]); return OM; 
		end if;
 		
 		return split_apply_outputs;		-- if all of these crude tests are passed, return the list of pairs of thryvars and their replacements
 		
	end get_apply_output_params;			

			--      ************* Skolemization inference checking (outside proofs) ***************

	procedure check_a_skolem_inf(next_thm_name,theorem_to_derive,apply_params,apply_outputs);
									-- checks a skolem inference

		-- we first separate out the defined-parameter list of the APPLY.  
		-- These are coarsely validated (prior to the call of this routine), and then the apply_params are further
		-- validated by verifying that the individual parts have forms corresponding to valid definitions.
		-- apply_outputs is the comma-and-colon separated string of pairs thryvar:replacement taken from the APPLY hint. 
		-- apply_params is the list of input symbols required for the APPLY, taken from APPLY(apply_outputs) theory_name(apply_params)
		
		if (tree_and_split_outputs := check_skolem_conclusion_tree(theorem_to_derive,apply_params,apply_outputs)) = OM then return OM; end if;
 				-- tree_and_split_outputs returns the parse tree of Skolem desired_conclusion and the list of apply outputs
 				-- as pairs [thryvar,replacement].
 				-- a coarse lexical validity test is applied to (partially) validate the format of the APPLY hint supplying the apply_outputs.
		[tree,split_apply_outputs] := tree_and_split_outputs;		-- get syntax tree of theorem_to_derive, and lis of [thryvar,replacemen pairs]
		
		if (required_hypothesis := build_Skolem_hypothesis(theorem_to_derive,tree,split_apply_outputs)) = OM  then return OM; end if;
				-- get hypothesis required for Skolem conclusion after first applying relevant syntactic checks
  
--print("<P>check_a_skolem_inf: ",next_thm_name," ",theorem_to_derive," apply_params: ",apply_params," apply_outputs: ",apply_outputs);
--print("<P>required_hypothesis: ",required_hypothesis,"<P>");
  		return test_conclusion_follows(next_thm_name,required_hypothesis); 

	end check_a_skolem_inf;			

	procedure check_skolem_conclusion_tree(desired_conclusion,apply_params,apply_outputs);	
 				-- returns the parse tree of Skolem desired_conclusion and the list of apply outputs as pairs [thryvar,replacement].
 				-- a coarse lexical validity test is applied to (partially) validate the format of the APPLY hint supplying the apply_outputs.

 		if apply_params /= [] then		-- assumed symbols are improperly being supplied for APPLY Skolem, which requirs none
			printy(["\n****** Error verifying step: in proof step \n\t: "
					+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
						"\nNo substitutions appear in APPLY Skolem."]); 
			error_count +:= 1; return OM;
		end if;
		
					-- decompose and validate apply_outputs, returning them as a tuple of pairs
			-- get_apply_output_params expects its apply_outputs parameter to be a comma-separated list of colon-separated pairs thryvar:replacement
			-- derived from an APPLY hint. It chcks he format of the hint crudely, and verifies that no thryvar occurs reepatedly in the hint.
			-- if all of these crude tests are passed, return the list of pairs of thryvars and their replacements 
		if (split_apply_outputs := get_apply_output_params(apply_outputs,hint)) = OM then 
			printy(["\n****** Error verifying step: in proof step \n\t: "
					+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
								"\nBad substitution in APPLY Skolem."]); 
			error_count +:= 1; return OM; 
		end if;
						-- probably redundant check of format of initial thryvar components of pairs
		if exists p = split_apply_outputs(j) | (p1 := p(1))(1) /= "v" or p1(2..#p1 - 8) /= str(j) then		-- check for 'vnnnn_thryvar' format
			printy(["\n****** Error verifying step: in proof step \n\t: "
					+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
								"\nIllformed defined-variables list in Skolem APPLY. ",apply_params]); 
			error_count +:= 1; return OM;
		end if;

--printy(["check_a_skolem_inf: "," ",split_apply_outputs," desired_conclusion: ",desired_conclusion]);

					-- we parse the statement to be inferred
		if (tree := parse_expr(desired_conclusion + ";")) = OM then 
			printy(["\n****** Error verifying step: in proof step \n\t: "
					+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
								"\nSkolem conclusion has bad syntax"]); 
			error_count +:= 1; return OM;
		end if;
		
		return [tree(2),split_apply_outputs];			-- drop the 'list' prefix

	end check_skolem_conclusion_tree;

	procedure build_Skolem_hypothesis(desired_conclusion,tree,split_apply_outputs);
			-- applies syntactic checks and builds hypothesis required for Skolem conclusion
			-- desired_conclusion is a string representing the desired conclusion; 'tree' is its syntax tree
			-- split_apply_outputs is a tuple of pairs [thryvar,replacement]. These are pairs of strings.

		if running_on_server then desired_conclusion := unparse(tree); end if;
						-- avoid '•' character problem on windows
--print("running_on_server: ",desired_conclusion," • ¥ ");		
		if tree(1) /= "ast_forall" then 		-- the Skolem required_hypothesis will be existentially quantified, and
												-- all occurrences of the Skolem symbols must be parameterless

					-- find all the occurences of the replacement symbols in the syntax tree of the desired_conclusion
			relevant_nodes := symbol_occurences(tree,skolem_outputs := {case_change(y,"lu"): [-,y] in split_apply_outputs});

			if exists rn in relevant_nodes | #(rn(3)?[]) > 0 then 		-- error: in this case Skolem constants cannot have parameters
				printy(["\n****** Error verifying step: in Skolem proof step \n\t: "
					+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested, 
									"\nSkolem constants cannot have parameters"]); 
				error_count +:= 1; return OM;
			end if;
					
					-- build the required hypothesis by prefixing purely exitential quantifiers to the conclusion 
			required_hypothesis := "(EXISTS " + join([y: y in {x: [-,x,-] in relevant_nodes}],",") + " | " + desired_conclusion + ")";
  			return required_hypothesis; 	
			
		end if; 

		if exists v in (varlist := tree(2)(2..)) | not is_string(v) then
			printy(["\n****** Error verifying step: in Skolem proof step \n\t: "
					+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested, 
								"\nInitial iterator of Skolem conclusion must be simple"]); 
			error_count +:= 1; return OM;
		end if;

		if (nvl := #varlist) /= #{x: x in varlist} then
			printy(["\n****** Error verifying step: in Skolem proof step \n\t: "
					+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested, 
								"\nRepeated variables in initial iterator of Skolem conclusion."]); 
			error_count +:= 1; return OM;
		end if;

--printy(["tree: ",varlist," ",{case_change(y,"lu"): [-,y] in split_apply_outputs}]);

		relevant_nodes := symbol_occurences(t3 := tree(3),skolem_outputs := {case_change(y,"lu"): [-,y] in split_apply_outputs});

--printy(["relevant_nodes: ",relevant_nodes]);	
		if exists rn in relevant_nodes, v in rn(3) | (v in rn(1)) then 
			printy(["\n****** Error verifying step: in Skolem proof step \n\t: "
					+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested, 
								"\nSkolem functions and constants can only be in scope of initial quantifier."]); 
			error_count +:= 1; return OM;
		end if;

		if exists rn in relevant_nodes | (nskoa := #(sko_args := rn(3)?[])) > nvl or sko_args(1..nskoa) /= sko_args then 
			printy(["\n****** Error verifying step: in Skolem proof step \n\t: "
					+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested, 
								"\nArguments of Skolem functions must be initial prefix of variable in prefixed quantifier list."]); 
			error_count +:= 1; return OM;
		end if; 
	
		nargs_of_skolem_fcns := {[rn(2),#(sko_args := rn(3)?[])]: rn in relevant_nodes};		-- mapping of skolem fuctions into their number of arguments
					-- note that only the symbols in the domain of this function, i.e. the declared skolem fcns
					-- which actually appear in the stated conclusion, are actually used in whar follows
			
		if (nsko := #nargs_of_skolem_fcns) /= #domain(nargs_of_skolem_fcns) then 
			printy(["\n****** Error verifying step: in Skolem proof step \n\t: "
					+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested, 
								"\nAll occurrences of Skolem functions must have the same number of arguments."]); 
			error_count +:= 1; return OM;
		end if; 
				-- at this point the Skolem inference has passed all its syntactic tests

		skolem_functions_in_order := merge_sort([[n,x]: [x,n] in nargs_of_skolem_fcns]);
			-- arrange the Skolem functions in order of their number of arguments
				
				-- Next we generate the 'required hypothesis' for the Skolem application. This is done by first building the
				-- prefixed quantifier for it.
		varlist_in_order := [[j,x]: x = varlist(j)];			
		
--printy(["skolem_functions_in_order: ",skolem_functions_in_order," ",varlist]);		

		prior_was := OM;		-- was the last symbol scanned a skolem_function name, or a variable in the varlist
		skix := vix := 1;		-- indices for the scan
		numquants := 0;			-- will count number of quantifiers
		
		quantifier_string := "";			-- will build the pre-Skolemization quantifier string
		
		while skix <= nsko or vix <= nvl loop
 
 			if skix <= nsko and vix <= nvl then		-- both indices are in range
 			
 				take := if skolem_functions_in_order(skix)(1) < varlist_in_order(skix)(1) then 1 else 2 end if;
 
 			elseif skix <= nsko then				-- skix is in range
 				
 				take := 1;
 	
 			else									-- vix is in range
 				
 				take := 2;
			
 			end if;
--printy(["skix,vix: ",skix," ",vix," nsko: ",nsko," nvl: ",nvl," take: ",take," prior_was: ",prior_was," ",quantifier_string]);			
 			if take = 1 then		-- take from skolem_functions_in_order
 				
 				if prior_was = 1 then  -- just take variable name, prefixed by a comma 
 
 					quantifier_string +:= (", " + skolem_functions_in_order(skix)(2));
 
 				elseif prior_was = 2 then  
  
 					quantifier_string +:= (" | (EXISTS " + skolem_functions_in_order(skix)(2));
 					numquants +:= 1;
				
 				else		-- prior_was = OM; like prior_was = 2, but omit '|'
  
 					quantifier_string +:= ("(EXISTS " + skolem_functions_in_order(skix)(2));
					numquants +:= 1;
				
 				end if;
 				
 				prior_was := 1; skix +:= 1;		-- advance the skolem index
 				
 			else
 				
 				if prior_was = 2 then  -- just take variable name, prefixed by a comma 

 					quantifier_string +:= (", " + varlist_in_order(vix)(2));
 
				elseif prior_was = 1 then  
 
 					quantifier_string +:= (" | (FORALL " + varlist_in_order(vix)(2));
 					numquants +:= 1;
				
 				else		-- prior_was = OM; like prior_was = 1, but omit '|'

 					quantifier_string +:= ("(FORALL " + varlist_in_order(vix)(2));
 					numquants +:= 1;

  				end if;
 				
 				prior_was := 2; vix +:= 1;		-- advance the variables index
 			
 			end if;

 		end loop;

		return quantifier_string + " | " + unparse(remove_arguments(t3,[y: [-,y] in skolem_functions_in_order])) + numquants * ")";
	
	end build_Skolem_hypothesis;			

			--      ************* Skolemization inference checking (within proofs) ***************

 	procedure check_a_Skolem_inf_inproof(stat_stack,theory_name,apply_params,apply_outputs);	
 					-- handle a single, non-skolem, theory-application inference
		-- To handle these inferences, we first separate out the defined-parameter list and the substitution-list of the 
		-- APPLY. These are coarsely validated (prior to the call of this routine), and then the apply_params are further
		-- validated by verifying that their individual parts have forms corresponding to valid definitions.
		
		if (tree_and_split_outputs := check_skolem_conclusion_tree(desired_concl := drop_labels(stat_stack(nss := #stat_stack))(1),apply_params,apply_outputs)) = OM then
			return OM; 
		end if;

				-- get parse tree of Skolem conclusion after applying checks
		[tree,split_apply_outputs] := tree_and_split_outputs;
		
		if (required_hypothesis := build_Skolem_hypothesis(desired_concl,tree,split_apply_outputs)) = OM  then return OM; end if;
				-- get hypothesis required for Skolem conclusion after first applying relevant syntactic checks
 		 
		conj_to_test := build_conj("",stat_stack(1..nss - 1) with required_hypothesis,OM);

 		test_conj(conj_to_test);		-- test this conjunct for satisfiability 
--printy(["conj_to_test tested_ok: ",tested_ok]);
		if not tested_ok then 
			printy(["\n****** Error verifying step: in Skolem proof step \n\t: "
					+ number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested, 
								"\nHypothesis for Skolem inference are not available."]); 
			error_count +:= 1;
		end if;
 	
 		return true;			-- otherwise the conclusion follows
 		
	end check_a_Skolem_inf_inproof;

	procedure conclusion_follows(theory_name,apply_outputs,apply_params_parsed,conclusion_wanted);
					-- here we know that the 'required hypothesis' of an APPLY is available, we collect all those Theorems of the THEORY 
					-- being applied which do not involve any constant or function defined in the theory
					-- and which are not in (the assumed functions/constants list) or in the generated-symbols list. 
					-- These are conjoined in universally quantified form; then 'replace_fcn_symbol' is used repeatedly
					-- to replace every assumed and generated symbol with its appropriate replacement. The result of this substitution
					-- becomes the clause which the APPLY operation makes available.
	
		thms_of_theory := {x in theors_defs_of_theory(theory_name) | x(1) = "T"};		-- the theorems of the theory being applied

		span(apply_outputs," \t("); rspan(apply_outputs," \t)");
--printy(["thms_of_theory: ",thms_of_theory]);

		apply_outputs_map := {x: x in breakup(breakup(apply_outputs,","),":")};

		apply_outputs_map := {[case_change(x,"lu"),y]: [x,y] in apply_outputs_map};		-- quoted theorems of theory being applied are upper case July 6, 2005
--print("apply_outputs_map after uppercasing: ",apply_outputs_map);
		if exists x in apply_outputs_map | #x /= 2 then
			printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nIllformed APPLY output list", 
								"\nApply outputs are: ",apply_outputs]); 
			error_count +:= 1;
			return OM;
		end if;

		defined_in_theory := (alldefs := def_in_theory(theory_name)?{}) - {case_change(x,"lu"): x in domain(apply_outputs_map)};
--															  + {case_change(x,"lu"): x in range(apply_outputs_map)};  -- domain and range might overlap
								-- if no symbol is defined within a theory, def_in_theory(theory_name) will be OM

		fully_quantified_recovered_defs_of_theory := 
			[fully_quantified(theory_name,unparse(def_as_eq(symb,sdf))): symb in alldefs | (sdf := symbol_def(theory_name + ":" + symb)) /= OM and sdf(2) /= "defined_by_theory_application"];
 					-- convert the definitions of the theory to theorems (****** should be only if they are available in light of symbols they use)
 					-- ignore the supplementary definitions coming from assumed theory constants and implicit definitions by APPLY
 					
--printy(["alldefs: ",alldefs," ",theory_name," fully_quantified_recovered_defs_of_theory: ",fully_quantified_recovered_defs_of_theory]);		
		
					-- the symbols defined in the theory which are not output symbols
		thms_available := [fully_quantified(theory_name,tstg): t in thms_of_theory | free_vars_and_fcns(tstg := theorem_map(t)) * defined_in_theory = {}]
								+ fully_quantified_recovered_defs_of_theory;
				-- get all those theorems of the theory which do not involve any symbol defined in the theory which is not a theory output
		if thms_available = [] then thms_available := ["true"]; end if;		-- make sure that at least one theorem is available
--printy(["thms_of_theory: ",thms_of_theory," ",thms_available," ",defined_in_theory," ",[free_vars_and_fcns(theorem_map(t)) * defined_in_theory: t in thms_of_theory | free_vars_and_fcns(tstg := theorem_map(t)) * defined_in_theory /= {}]]);		
					-- form the conjunction of the fully quantified thms_available, and in it replace all the output symbols
					-- by their replacements
					
--print("thms_of_theory: ",thms_of_theory," defined_in_theory: ",defined_in_theory," apply_outputs_map: ",apply_outputs_map," alldefs: ",alldefs);
		conjoined_thms_avail := join(["(" + av + ")": av in thms_available]," & ");	

		parsed_concl := parse_expr(conjoined_thms_avail + ";")(2);			-- parse the conjunction of the hypotheses
		 
					-- now use 'replace_fcn_symbol'	repeatedly to replace every assumed symbol
					-- of the THEORY being applied by its replacement expression	 
		for [symb_referenced,[def_vars,def_body]] in apply_params_parsed loop 					
			parsed_concl := replace_fcn_symbol(parsed_concl,symb_referenced,def_vars,def_body);
		end loop;
--print("apply_outputs_map: ",apply_outputs_map);
						-- also replace the output symbols of the theory by the symbols which replace them
		for [orig,replacement] in apply_outputs_map loop 
--print("<BR>[orig,replacement]: ",[orig,replacement],"<BR>parsed_concl: ",parsed_concl);
			parsed_concl := replace_fcn_symbol(parsed_concl,case_change(orig,"lu"),OM,case_change(replacement,"lu"));
--print("<BR>parsed_concl: ",unicode_unpahrse(parsed_concl));
		end loop;
--->debug
--print("<P>parsed conjunction of theorems of theory after replacement of assumed by supplied functions:<BR>",theory_name," apply_outputs_map: ",apply_outputs_map," parsed_concl: ",unicode_unpahrse(parsed_concl)); if just_whitespace(conclusion_wanted) then print("******** conclusion wanted is empty"); else --print("<P>conclusion_wanted:<BR>",unicode_unpahrse(parse_expr(conclusion_wanted +";"))); end if;

				-- we now require that the stated conclusion of the APPLY be a ELEM consequence of the parsed_concl 
				 
		conj_to_test := build_conj("",[uparc := unparse(parsed_concl),conclusion_wanted],OM);		-- the last formula on the 'stack' passed is negated

 		test_conj(conj_to_test);		-- test this conjunct for satisfiability 
--printy(["tested_ok: ",tested_ok," ",not tested_ok]);
		if not tested_ok then 
			error_count +:= 1;
			print("<BR>",["conj_to_test for conclusion: ",conj_to_test," tested_ok: ",tested_ok]);		
			print("<BR>",["Stated conclusion does not follow from theory: ",theory_name," conclusion of theory is: ",uparc," conclusion_wanted is: ",conclusion_wanted]); 		
			return OM;
		end if;
--printy(["return true: ",true]);

		return true;
		
	end conclusion_follows;
	
	procedure just_whitespace(stg); span(stg," \t"); return stg = ""; end just_whitespace;
	
 	procedure build_required_hypothesis(hypotheses_list,apply_params_parsed);
 						-- build required_hypothesis for theory application; return as string

			conjoined_hypotheses := join(["(" + hyp + ")": hyp in hypotheses_list]," & ");	
--printy(["conjoined_hypotheses: ",conjoined_hypotheses]);
			parsed_conj := parse_expr(conjoined_hypotheses + ";")(2);			-- parse the conjunction of the hypotheses
		
						-- now use 'replace_fcn_symbol'	repeatedly to replace every assumed symbol
						-- of the THEORY being applied by its replacement expression	 
			for [symb_referenced,[def_vars,def_body]] in apply_params_parsed loop 					
				parsed_conj := replace_fcn_symbol(parsed_conj,symb_referenced,def_vars,def_body);
			end loop;
	
--printy(["parsed_conj: ",unparse(parsed_conj)]);
		return unparse(parsed_conj);
	
	end build_required_hypothesis;
	
	procedure def_as_eq(symb,args_and_def);		-- rebuild a definition as an equality or equivalence
	
		[args,rt_side] := args_and_def;
		left_side := if #args = 0 then symb else ["ast_of", symb,["ast_list"] + args] end if;
--printy(["def_as_eq: ",symb," ",args_and_def," ",left_side]);		
		return [if tree_is_boolean(rt_side) then "DOT_EQ" else "ast_eq" end if,left_side,rt_side]; 
 
 	end def_as_eq;

	procedure tree_is_boolean(tree);		-- test a tree to see if its value is boolean
	
		return if is_string(tree) then tree in {"ast_true","ast_false"} else 
				tree(1) in {"ast_and","ast_or","ast_not","ast_eq","ast_neq","DOT_EQ","DOT_INCIN","ast_in","ast_notin","ast_incs"} end if;
 
 	end tree_is_boolean;
				
				--      *************************************************************
				--      ************* Interfacing to external provers ***************
				--      *************************************************************

			-- The following routine organizes the Ref system the ability to interface with external provers such as Otter.
			-- This is done by a syntactic extension of the normal Ref 'APPLY' directive, i.e. extrenal provers are regarded
			-- as providing special kinds of Ref THEORYs. When such provers are being communicated with, 
			-- the normal keyword 'APPLY' used to invoke a THEORY is changed to 'APPLY_provername', where 'provername' names the
			-- external prover in question. In this case, the normal Ref THEORY delaration is expanded to list Ref-syntax translations
			-- of all the theorems being drawn from the external prover, and of all the external symbol definitions on which these depend. 
			-- An external file, also named in the modiified Ref 'APPLY' directive, must be provided as  certification of each such THEORY. 
			-- Ref examins this file to establish that it is a valid proof, by the external prover named, of all the theorems 
			-- which the THEORY claims.
			
			-- The axioms and definitions assumed by the external prover are listed in the external theory declaration 
			--  preceding the '==>' mark which starts the list of conclusions of the external theory, and its conclusions follow this mark
			-- defintions are introced by the token ExtDef. Ref must verify the presence of corresopnding theorems and 
			-- defintions to justify use of the conclusions provided by the external prover.
			
			-- See the main shared_scenario, THEORY_otter orderedGroups, for an example of these rules.
			
			-- The first routine below merely detects what external prover is being used to derive the Ref theory in question,
			-- and calls a procedure appropriat to this theory. One such procedure is provided for each external prover available to Ref.
			
	procedure check_an_external_theory(th,assumed_fcns,assumps_and_thms);		-- check declaration of an external THEORY
		
		match(th,"_"); prover_name := break(th,"_"); match(th,"_"); 		-- separate out the name of the responsible prover
		
		if not (exists ath = assumps_and_thms(j) | ath = "==>") then 
			printy(["******* Error: declaration of external theory ",th," for prover ",prover_name,"lacks '==> separator between axioms and theorems"]);
			total_err_count +:= 1; return;
		end if;

		case prover_name
		
			when "otter" => return check_an_otter_theory(th,assumed_fcns,assumps_and_thms(1..j - 1),assumps_and_thms(j + 1..)); 
					-- check declaration of an otter THEORY

		end case;
		
	end check_an_external_theory;

				--      ************* Interface to 'Otter' prover ***************

	procedure otter_clean(line); 		-- removes otter comments and forumla_to_use lines
			front := break(line,"%"); span(front,"\t "); rspan(front,"\t "); 
			if front = "formula_list(usable)." then return ""; end if;
			if front = "end_of_list." then return ""; end if;
			return front; 
	end otter_clean;
		
	procedure check_an_otter_theory(th,assumed_fcns,assumps,thms);		-- check declaration of an otter THEORY
--return true;			-- disable temporarly

		setup_parse_priorities_and_monadics(otter_op_precedence,otter_can_be_monadic,otter_refversion);
				-- prepare for conversion from Otter to Ref syntax

		otter_lines := get_lines(th + "_otMA.txt");			-- read in the file of oter proofs which will be used as the external justification

		if otter_lines = [] or otter_lines = OM then 		-- check tat this read was OK
			printy(["******* Error: cannot find formatted Otter file ",of_name]); 
			total_err_count +:= 1; return;
		end if;
 	
				
				-- decompose the otter file into its 'FILE' sections, suppressing comments
				-- these are delimited by lines starting "FILE::", e.g. for ordered_groups we have 
				-- FILE:: orderedGroups_axioms.txt, FILE:: orderedGroups_defs.txt, FILE:: orderedGroups_basicLaws.txt
				-- etc.
				
		otter_lines := [oc: line in otter_lines | (oc := otter_clean(line)) /= ""];
		file_header_lines := [j: line = otter_lines(j) | #line > 6 and line(1..6) = "FILE::"];

		file_body := {};			-- will map file descriptors into their following lines
		theorems_files := defs_files := axioms_files := proofs_files := {};		-- the four categories of header lines to be segregated
 		
		for j = file_header_lines(k) loop		-- iterate over the otter file, looking for its "FILE::" header lines, 
												-- and from these isloating the following file descriptor name

			file_header_line := otter_lines(j); match(file_header_line,"FILE::"); span(file_header_line," \t"); 
			break(file_header_line,"_"); match(file_header_line,"_"); 
			rbreak(file_header_line,"."); rmatch(file_header_line,"."); 	-- file_header_line is now the file descriptor
			file_body(file_header_line) := otter_lines(j + 1..(file_header_lines(k + 1)?(#otter_lines + 1)) - 1);
					-- associate the following file section with its header line
 
 					-- the headers of the otter file sections are assumed to have one of several forms,
 					-- distinguished by the lst part of their names. These are exemplified by
 					-- FILE:: orderedGroups_****axioms****.txt (required axioms), orderedGroups_****defs****.txt (definitions)
 					-- orderedGroups_basic****Laws****.txt, (otter theorems) orderedGroups_A1.out.txt (otter prrofs)
 			fhlc := file_header_line; tag := rmatch(fhlc,"Laws"); 
 			if tag /= "" then 				-- collect the Ottter file section headers into the four categories described above
 				theorems_files with:= file_header_line;		-- collect otter theorem
			else
 
 				fhlc := file_header_line; tag := rmatch(fhlc,".out"); 

				if tag /= "" then 							-- collect otter proof
 					proofs_files with:= file_header_line;
				else
 					fhlc := file_header_line; tag := rmatch(fhlc,"axioms"); 
					if tag /= "" then  						-- collect otter axiom
	 					axioms_files with:= file_header_line;
					else  									-- collect otter definition
	 					fhlc := file_header_line; tag := rmatch(fhlc,"defs"); 
	 					if tag /= "" then defs_files with:= file_header_line; end if;
					end if;
			
				end if;

			end if;
			
		end loop;
						-- convert all non-proof files (axioms, definitions, and theorems) from otter to Ref syntax

		for fh in theorems_files + defs_files + axioms_files loop

 			ok_converts := [otr: item in file_body(fh) | (otr := otter_to_ref(item,of_name)) /= OM];

			if otr /= OM and (potr := parse_expr(otr + ";")) = OM then 		-- check the syntax of the recoverd material, diagnosing failures
				printy(["******* Error: bad reconverted Otter item ",otr]); 
				total_err_count +:= 1; return;
			end if;
														-- record a clean, uparsed bersion of the recovered formula
			file_body(fh) := [case_change(unparse(parse_expr(otr + ";")(2)),"lu"): otr in ok_converts];
					-- canon 
		end loop;
--printy(["done otter to Ref syntax loop: ",#file_header_lines]); stop;	
						-- now verify that the Ref-side assumptions, definitions, and theorems agree with the
						-- Otter-side assumptions, definitions, and theorems
						
								-- get the otter assumptions, definitions, and theorems in Ref syntax
		otter_assumps := {} +/ [{lin: lin in file_body(fh) | lin(#lin) /= "."}: fh in axioms_files];
		otter_defs := {} +/ [{lin: lin in file_body(fh) | lin(#lin) /= "."}: fh in defs_files];
		otter_theorems := {} +/ [{lin: lin in file_body(fh) | lin(#lin) /= "."}: fh in theorems_files];

		
--print("file_body('absLaws'): ",file_body("absLaws")," ",theorems_files," ",defs_files," ",axioms_files," ",proofs_files);
--print("otter_lines: ",file_header_lines,"\n",join(otter_lines(1..100),"\n"));		
--print("assumps: ",assumps);				
		canonical_assumptions := {};		-- we collect the external assumptions and definitions and put them in canonical form
											-- onestandardized, external defintions are treated in the same wayas eternal assumptions, 

		for af in assumps loop 			-- check the syntax of the Ref-side assumps
			
			ed := match(af,"ExtDef"); 			-- we deal with the Ref form of an otter definition
--->working
			if ed /= "" then 		-- have an 'external definition' line in Ref
null;			
				span(af,"\t "); rspan(af,"\t ");  -- process the definition, as formulated in Ref 
				
				if (afp := parse_expr(af + ";")) = OM or (afp := afp(2)) = OM or afp(1) /= "ast_assign" then 
					printy(["******* Error: illformed definition in external theory ",th,": ",af]); 
					total_err_count +:= 1; return;
				end if;
--print("th: ",th);
				afp(1) := "ast_eq"; af := fully_quantified_external("_otter_" + th,unparse(afp));
		
printy(["definition_body: ",af]);		

			elseif (afp := parse_expr(af + ";")) = OM then 
				printy(["******* Error: illformed assumption in external theory ",th,": ",af]); 
				total_err_count +:= 1; return;
			else			 		-- have an 'external assumption' line
				afp := afp(2);			-- as usual
--print("afp: ",afp);
				if afp(1) = "ast_forall" then
					boddie := afp(3);			-- the body of the assumption
					if boddie(1) = "DOT_IMP" and (bod3 := boddie(3))(1) = "ast_of" and bod3(2) = "IN_DOMAIN" then continue; end if;
							-- bypass initial closure assumptions 
				elseif afp(1) = "ast_of" and afp(2) = "IN_DOMAIN" then 
					continue; 		-- bypass initial closure assumptions 
				end if;
				
				canonical_assumptions with:= case_change(unparse(afp),"lu");
								-- collect the ref assumption in canonical form
				
			end if;
	
--print("assump: ",af);
		end loop;
		
		otter_assumps := {suppress_chars(join(breakup(x,char(165)),"YEN_")," \t"): x in otter_assumps};   -- ignore discrepant blanks
		canonical_assumptions := {suppress_chars(join(breakup(x,char(165)),"YEN_")," \t"): x in canonical_assumptions};  -- ignore discrepant blanks
--print("otter_assumps: ",otter_assumps);	print("canonical_assumptions: ",canonical_assumptions);			
		if (missing := otter_assumps - canonical_assumptions) /= {} then 			-- some assumptions are missing in the Ref form of the theory
			for assump in missing loop
				printy(["ERROR ******** Otter assumption: ",assump," is not present in Ref assumption list for theory ",th]);
				total_err_count +:= 1;
			end loop;
		end if;
		
		if (superf := canonical_assumptions - otter_assumps) /= {} then 			-- some assumptions are missing in the Ref form of the theory
			for assump in superf loop
				printy(["WARNING ******** Theory assumption: ",assump," is not required for Otter theory ",th]);
			end loop;
		end if;

--print("canonical_assumptions: ",canonical_assumptions);		
--print("otter_theorems: ",otter_theorems);
		canonical_theorems := {};		-- will collect the Ref-side theorems and put them in canonical form
		tags_to_theorems := {};			-- map of theorem tags to theorem statements
printy([" "]);		
		for thm in thms loop 			-- check the syntax of the Ref-side thms
			
			rbreak(thm,"]"); tag := rbreak(thm,"["); rmatch(thm,"["); rspan(thm,"\t "); 
			rspan(tag,"\t "); rmatch(tag,"]");

			if (thmp := parse_expr(thm + ";")) = OM then 
				printy(["******* Error: illformed theorem in external theory ",th,": ",thm]); 
				total_err_count +:= 1; return;
			end if;
			
			canonical_theorems with:= suppress_thryvar(case_change(unparse(thmp),"lu"));
								-- collect the ref assumption in canonical form
			tags_to_theorems with:= [tag,thm];
			
		end loop;
--printy(["tags_to_theorems: ",tags_to_theorems]);	
		otter_theorems := {suppress_chars(join(breakup(x,char(165)),"YEN_")," \t"): x in otter_theorems};   -- ignore discrepant blanks
		canonical_theorems := {suppress_chars(join(breakup(x,char(165)),"YEN_")," \t"): x in canonical_theorems};  -- ignore discrepant blanks

		if (missing := canonical_theorems - otter_theorems) /= {} then 			-- some assumptions are missing in the Ref form of the theory
			for thm in missing loop
				printy(["ERROR ******** theorem: ",thm," is not present in Otter theorem set for theory ",th]);
				total_err_count +:= 1;
			end loop;
		end if;
		
		if (superf := otter_theorems - canonical_theorems) /= {} then 			-- some assumptions are missing in the Ref form of the theory
			for thm in superf loop
				printy(["WARNING ******** Otter theorem: ",thm," is not carried over to theory ",th]);
			end loop;
		end if;

--printy(["otter_theorems: ",otter_theorems," canonical_theorems: ",canonical_theorems]);
--print("check_an_otter_theory: ",th," assumed_fcns: ",assumed_fcns,"\nassumps",assumps,"\nthms",thms);

	end check_an_otter_theory;

	procedure suppress_thryvar(stg); 		-- suppresses all instances of '_THRYVAR' in string

		return "" +/ [p in segregate(stg,"_THRYVA") | p /= "_THRYVAR"];

	end suppress_thryvar;

	procedure otter_to_ref(otter_item,otfile_name); 		-- converts an otter item to SETL syntax; returns unparsed tree or OM
--print("otter_item: ",otter_item);	
		orig_otter_item := otter_item;
		
		if #otter_item > 1 and otter_item(1) = "(" then 			-- remove enclosing parentheses
			match(otter_item,"("); span(otter_item,"\t "); rspan(otter_item,"\t "); rmatch(otter_item,")."); rspan(otter_item,"\t ");
		end if;
		
		if #otter_item > 3 and otter_item(1..3) = "all" then 			-- we have an axiom, definition, or theorem
			
			rspan(otter_item,"\t "); rmatch(otter_item,"."); rspan(otter_item,"\t ");  -- remove trailing dot if any
			
			otter_item := otter_item(4..); span(otter_item,"\t "); prefix := break(otter_item,"("); rspan(prefix,"\t "); 
			prefix := [x in breakup(prefix," \t") | x /= ""];

			If (parse_tree := alg_parse(otter_item)) = OM then 			-- otter item in external file has bad syntax
				printy(["ERROR ******* Otter item in external file has bad syntax: ",orig_otter_item]); 
				total_err_count +:= 1; return OM;
			end if;
			
--			res := "(FORALL " + join(prefix,",") + " | (" + join(["In_domain(" + p + ")": p in prefix]," & ") + ") •imp (" + unparse(parse_tree) + "))";  -- Mac version
			res := "(FORALL " + join(prefix,",") + " | (" + join(["In_domain(" + p + ")": p in prefix]," & ") + ") ¥imp (" + unparse(parse_tree) + "))";

			if parse_expr(res + ";") = OM then
				printy(["ERROR ******* Otter item in external file has bad Ref version: ",orig_otter_item," ",res]); 
				total_err_count +:= 1; return OM;
			end if;
--print("otter_item and translation: ",orig_otter_item,"\n",res,"\n",parse_tree);
			return res;		
		else
			return otter_item;		-- return item unchanged
		end if;

	end otter_to_ref;


	--      **************************************************************
	--      ************* Formula-feature search utilities ***************
	--      **************************************************************
	
	-- Next follos a miscellaneous collection of formula search and manipulation utilities.  
	
	procedure find_free_vars_and_fcns(node); 		-- find the free variables and function symbols in a tree (main entry)
		all_free_vars := all_fcns := {}; find_free_vars_and_fcns_in(node,[]); return [all_free_vars,all_fcns];			
						-- use the recursive workhorse and a global variable
	end find_free_vars_and_fcns;

	procedure find_free_vars_and_fcns_in(node,bound_vars); 		-- find the free variables in a tree (recursive workhorse)
--if node(1) = "ast_if_expr" then printy(["find_free_vars_and_fcns_in: ",node]); end if;
		if is_string(node) then 				-- ******** the following should be generalized so as not to assume that we are in Set_theory ********
			if  (isund := symbol_def("Set_theory:" + node) = OM) and node notin bound_vars and node /= "OM" and node /= "_nullset" and node notin special_set_names then 
				all_free_vars with:= node;
			elseif not isund then		-- the symbold has a definition, so count it as a parameterless constant, i.e. function
				all_fcns with:= node;
			end if;
			 return; 
		end if; 

		case (ah := abbreviated_headers(node(1)))

			when "and","or","==","+","-","{-}","in","notin","/==","=","/=","[]","[-]","{.}","itr","Etr","incs","incin","imp","*","->","not","null" => -- ordinary operators

				for sn in node(2..) loop find_free_vars_and_fcns_in(sn,bound_vars); end loop;

			when "arb","range","domain" => -- ordinary operators

				for sn in node(2..) loop find_free_vars_and_fcns_in(sn,bound_vars); end loop;

			when "()" => 				-- this is the case of functional and predicate application; the second variable is a reserved symbol, not a set
				
				all_fcns with:= node(2);
				for sn in node(3..) loop find_free_vars_and_fcns_in(sn,bound_vars); end loop;

			when "{}","{/}","EX","ALL" => bound_vars +:= find_bound_vars(node); 			-- setformer or quantifier; note the bound variables
--printy(["bound_vars: ",bound_vars]);
				for sn in node(2..) loop find_free_vars_and_fcns_in(sn,bound_vars); end loop;		-- collect free variables in args

			when "@" => 							-- functional application

				for sn in node(2..) loop find_free_vars_and_fcns_in(sn,bound_vars); end loop;		-- collect free variables in args

			when "if" => 							-- conditional expression

				for sn in node(2..) loop find_free_vars_and_fcns_in(sn,bound_vars); end loop;		-- collect free variables in args

			otherwise => 		-- additional infix and prefix operators, including if-expressions

				all_fcns with:= node(1);
				for sn in node(2..) loop find_free_vars_and_fcns_in(sn,bound_vars); end loop;		-- collect free variables in args
		
		end case;
		
	end find_free_vars_and_fcns_in;

	procedure find_quantifier_bindings(node); 		-- find the variable bindings at the top of an iterator tree

		case abbreviated_headers(node(1))
		
			when "{}" => iter_list := node(3); 		-- setformer; get iteration list from position 3
		
			when "EX","{/}" => iter_list := node(2);		-- existential or setformer without exp; get iteration list from position 2
		
			when "ALL" => iter_list := node(2);		-- universal; get iteration list from position 2
		
			otherwise => return {};		-- no bound variables at this node

		end case;				-- now process the iteration list
	
		if is_string(itl2 := iter_list(2)) then return {[itl2,["OM"]]}; end if;			-- case of an unconstrained quantifier
		
		bindings := {};				-- start to collect ordered set of bound variables
		
		for iter_clause in iter_list(2..) loop
	
			case abbreviated_headers(iter_clause(1))
			
				when "=" => bindings with:= [iter_clause(2),["OM"]]; 		-- x = f(y) or x = f{y} iterator.

					bindings with:= [iter_clause(3)(3)(2),["OM"]];	
							-- from the 'functional' tail of the iterator, dig out the argument list and then its first element
							-- Note: in iterator constructions like x = f(y,z,w), only the first argument is bound by the iterator
			
				when "in" => bindings with:= [iter_clause(2),["in",iter_clause(3)]];
 
 				when "incin" => bindings with:= [iter_clause(2),["OM"]]; 		-- x in s or x incin s iterator; collect x
	
			end case;
		
		end loop;
--printy(["find_quantifier_bindings: ",node,"\nbindings: ",bindings]);		
		return bindings;
		
	end find_quantifier_bindings;

	procedure list_of_vars_defined(theory_in,kind_hint_stat_tup);		-- find the ordered list of variables defined in a proof
 		-- these are the variables in loc_defs, those in statement substitutions of existential, notin, or notincs kind
 		-- and the output variables of APPLYS 
 		
 		lovd := [];						-- the list to be assembled
 
 		for [hint_kind,hint,stat] in kind_hint_stat_tup loop
--print("<BR>[hint_kind,hint,stat]: ",[hint_kind,hint,stat]);	
			case hint_kind
			
				when "Suppose_not" => 
						
						span(hint," \t"); rspan(hint," \t");
						
						if hint /= "Suppose_not" then 		-- check the variables provided for substitution
							if (p_hint := parse_expr(hint + ";")) = OM then
								printy(["******** Error: Illformed variable list in 'Suppose_not': ",hint]); continue;
						 	end if;
							if (p_hint := p_hint(2))(1) /= "ast_of" or (exists x in (argl := p_hint(3)) | not is_string(x)) then 			
								printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nIllformed list of variables in 'Suppose_not' proof step"]);
								error_count +:= 1; continue;
							end if;
						else		-- there are no arguments
							argl := ["null"];
						end if;

						lovd +:= argl(2..);
--printy(["Suppose_not case: ",lovd]); 

			
				when "Suppose" => 					
					
			 		ancestor_theories := [theory_in];			-- find the ancestor theories of the theory being applied
			 		theory_nm := theory_in;
			 		while (parent_theory := parent_of_theory(theory_nm)) /= OM loop
			 			ancestor_theories := [parent_theory] + ancestor_theories; theory_nm := parent_theory;
			 		end loop;

					freevs_of_stat := if (pas := parse_expr(drop_labels(stat)(1) + ";")) = OM then {} else find_free_vars(pas(2)) end if;
								-- get those free variables which have not yet been defined either globally or locally
					symbols_glob_defd := {symb: symb_w_theory in domain(symbol_def) | symbol_def(symb_w_theory)(1) = [] 
												and ([th,symb] := breakup(symb_w_theory,":"))(2)(1) notin "¥•" and th in ancestor_theories};
								-- all parameterless constants defined in ancestor theories	of this theory	
					consts_of_ancestor_theories := [case_change(x,"lu"): thry in ancestor_theories, x in (assumps_and_consts_of_theory(thry)?[[]])(1) | "(" notin x];
								-- all parameterless constants assumed in this theory and its ancestors	
--printy(["consts_of_ancestor_theories: ",consts_of_ancestor_theories]);			

					if (bad_freevs := {v: v in freevs_of_stat | (v notin lovd) and (v notin symbols_glob_defd)
										 and (v notin consts_of_ancestor_theories)}) /= {} then
						printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
							+ number_of_statement_theorem + "\n\t", statement_being_tested,
							"\nvariables " + bad_freevs + " not previously defined used in 'Suppose' statement"]);
						printy(["Erroneous free variables are ",bad_freevs]);
						error_count +:= 1;			 
					end if;
		 
--printy(["Suppose case: ",freevs_of_stat," ",stat," symbols_glob_defd: ",symbols_glob_defd," theory_in: ",theory_in," ancestor_theories: ",ancestor_theories]);

				when "Loc_def" => if (p_stat := parse_expr(drop_labels(stat)(1) + ";")) = OM then
											printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
													+ number_of_statement_theorem + "\n\t", statement_being_tested,
													"\nIllformed 'Loc_def' inference in proof step"]);
											error_count +:= 1;  continue;
									  end if;

									-- flatten the tree, wich might be a conjunct, and test its parts separately
					tup := conj_to_tuple(p_stat(2));			-- walks a syntax tree of a conjunct, converting it to a tuple
--print("tup: ",tup," ",p_stat(2));					
					for pconj in tup loop
						if pconj(1) /= "ast_eq" or not is_string(left := pconj(2)) then 			
							printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
									+ number_of_statement_theorem + "\n\t", statement_being_tested,
									"\nStatement " + stat + "in Loc_def inference is not a conjunction of simple equalities"]);
							printy(["Statement must be a conjunction of simple equalities, each with simple variable on the left: ",stat]); 
							error_count +:= 1; continue;
						end if;
						
						lovd with:= left;
					
					end loop;
					
--printy(["Loc_def case: ",stat," ",lovd]);

				when "APPLY" => lovd +:= [case_change(y?("??" + hint + "??"),"lu"): [x,y] in breakup(breakup(hint,","),":")];   -- here 'hint' is actually the output variable list
--printy(["APPLY case: ",lovd]);

				when "Stat_subst" =>     -- here 'stat' is actually the statement cited
					
					hint_pieces := segregate(hint,"->");
					if not (exists piece = hint_pieces(j) | piece = "-->") then 
						continue; 		-- bypass statement-substitution cases without supplied variables
					end if;
					piece := hint_pieces(1); rspan(piece," \t"); span(piece," \t"); 

					preflist := piece; rspan(preflist,"\t "); span(preflist,"\t ");  -- clean the list of substitution items  from the hint 
					lp := match(preflist,"("); rp := rmatch(preflist,")");
					
					if lp = "" then preflist := [preflist]; else preflist := split_at_bare_commas(preflist); end if;
								-- decompose the list into its comma-separated pieces
--printy(["piece:: ",piece," ",preflist]);			
--					statement_cited := join(breakup(stat,"&")," and ");	-- replace ampersands with 'ands' in the statement cited
					
					[stat_with_freevars,freevars] := strip_quants(parse_expr(stat + ";")(2),npl := #preflist);
										-- the strip_quants procedure returns the list freevars of generated variables,
										-- in the modified version stat_with_freevars of stat that would be used for substitution 
										-- if the statement substitution inference were actually performed. These are implictly
										-- marked as 'existential' or 'universal'; the existentials have the form 'VAR_nn' with odd
										-- values of the integer nn, while the universals have even values.
--printy(["freevars by strip_quants: ",freevars," ",preflist," ",stat]);					
					if #freevars < #preflist then 
--print("<BR>Error: "+ number_of_statement + " of theorem ",freevars," ",preflist," ",stat);
						printy(["\n****** Error verifying step: "+ number_of_statement + " of theorem " 
								+ number_of_statement_theorem + "\n\t", statement_being_tested,
								"\nToo many items to be substituted were supplied in 'Stat' substitution"]);
						printy(["Surplus items will be treated as existentially instantiated"]); 
						error_count +:= 1;			 
					end if;
					
					for substitem = preflist(j) loop
					
						if (fv := freevars(j)) = OM or (#fv > 4 and odd(unstr(fv(4..#fv - 1)))) then 		-- treat as existential

							if (pes := parse_expr(substitem + ";")) = OM or not is_string(pes(2)) then 
								printy(["\n****** Error verifying step: " + number_of_statement + " of theorem " 
										+ number_of_statement_theorem + "\n\t", statement_being_tested,
										"\nIllformed or non-simple expression supplied for existential instantiation"]);
								error_count +:= 1;	continue;
							end if;
							
							lovd with:= case_change(substitem,"lu");		-- capture the substitem
							
						end if;	
						
							-- in the universal case there is nothing to do here
					end loop;
--printy(["Stat_subst case: ",lovd]);		
			end case;

		end loop; 

		return lovd;
		
 	end list_of_vars_defined;

	procedure trim_front(stg); span(stg," \t");	return stg; end trim_front;		-- removes leading whitespace

	procedure front_label(stg); 		-- finds prefixed Statnnn: in string, if any and returns it; otherwise returns an empty string
					-- front labels can be any alphanumeric prefix starting with Stat and ending in a colon
--		drop_locdef(stg);				-- drop "Loc_def:" if it appears
		tup := segregate(stg,"Stabcdefghijklmnopqrsuvwxyz:0123456789");
		newt := lablocs := [];
		
		sect := tup(1);				-- get the first section
		if #sect > 5 and sect(1..4) = "Stat" and sect(#sect) = ":" then 				-- this is a prefixed label; return it
			return sect(1..#sect - 1);
		end if;

	 	return "";		-- return an empty string, indicating no label

	end front_label;

	procedure loc_break(stg); 		-- finds location of ==> in string, if any; position of last character is returned
		tup := segregate(stg,">=");
	 	return if exists sect = tup(j) | (sect = "==>" or sect = "===>") then +/ [#piece: piece in tup(1..j)] else OM end if;		-- position of last character is returned
	end loc_break;

	procedure decompose_ud_auto_hint(hint);		-- analyze Use_def AUTO case hint into its (up to) 3 parts
						-- in AUTO cases, the hint can have one of 4 forms:
						-- Use_def(symbol)
						-- Use_def(symbol->Statnnn)
						-- Use_def(symbol(p_1,...,p_k))
						-- Use_def(symbol(p_1,...,p_k)->Statnnn)
	
		hint := hint(9..);							-- take tail only
	
		if not (exists c = hint(k) | c = "(") then			-- parameterless case
	
			if exists j in [1..#hint - 2] | hint(j..j + 2) = "-->" then		-- labeled case
	
				tail := hint(j + 3..); hint := hint(1..j - 1);	-- isolate the label
				span(tail," \t"); rspan(tail," \t)");
				
				span(hint," \t"); rspan(hint," \t");			-- clean up the remainder of the hint
				return [hint,[],tail];
	
			else			-- no label
	
				span(hint," \t"); rspan(hint," \t)");			-- clean up the symbol (only)
				return [hint,[]];
	
			end if;
			
		else										-- case with  parameters
	
			if exists j in [1..#hint - 2] | hint(j..j + 1) = "->" then		-- labeled case
	
				tail := hint(j + 2..); hint := hint(1..j - 1);	-- isolate the label
				span(tail," \t"); rspan(tail," \t)");
	
							-- now extract the symbol and params
				span(hint," \t"); rspan(hint," \t"); rmatch(hint,")");
				symbol := break(hint,"("); rspan(symbol," \t)");
				match(hint,"("); rmatch(hint,")");			-- drop outermost parens
				return [symbol,split_at_bare_commas(hint),tail];
	
			else			-- no label
	
							-- extract the symbol and params
				span(hint," \t"); rspan(hint," \t"); rmatch(hint,")");
				symbol := break(hint,"("); rspan(symbol," \t)");
				match(hint,"("); rmatch(hint,")");			-- drop outermost parens
				return [symbol,split_at_bare_commas(hint)];
	
			end if;
		
		end if;
		
	end decompose_ud_auto_hint;
	
	procedure split_at_bare_commas(stg);		-- splits a string at commas not included in brackets
	
		newt := tup := single_out(stg,"{}[](),");		-- single out all the relevant marks
		nesting := 0;		-- iterate thru the resulting list, keeping track of the parenthesis level
		
		for x = tup(j) loop

			case x
			
				when "{","[","(" => nesting +:= 1;		-- increment level at each open paren
				
				when "}","]",")" => nesting -:= 1;		-- decrement level at each open paren
				
				when "," => if nesting > 0 then newt(j) := "`"; end if; 		-- change nested commas to back apostrophes
			
			end case;
			
		end loop;
		
		return [trim(join(breakup(stg,"`"),",")): stg in breakup("" +/ newt,",")];		
				-- break the resulting string at the remaining (non-nested) commas, and restore the back-apostrophes 
				-- in the remaining pieces to the commas originally present; remove surrounding whitespace if any

	end split_at_bare_commas;
	
	procedure trim(line); span(line,"\t "); rspan(line,"\t "); return line; end trim;		-- trim off whitespace

	procedure paren_check(stg); 		-- preliminary parenthesis-check
		for x in "{[(" loop count(x) := 0; end loop;
		for c = stg(j) | c in "{[()]}" loop 
			if c in "{[(" then 
				count(c) +:= 1; 
			else 
				if(count(c) -:= 1) < 0 then 
					abort("Parenthesis error of type " + c + " at position " + j + " in line:\n" + stg);
				end if; 
			end if;
		end loop;
		if exists x in "{[(" | count(x) /= 0 then abort("Parenthesis error of type " + x + " at end of " + stg); end if; 
		
		return true;
	end paren_check;

	procedure find_defined_symbols();	-- extracts the sequence of definitions, theorems, and theories from a scenario file 			
	end find_defined_symbols;

	procedure strip_quants(tree,nquants);		-- strip a specified number of quantifiers from a formula 
		var var_generator := 0;					-- (main entry)
--print("<P>strip_quants ",unparse(tree)," ",nquants); 				
		res := strip_quants_in(tree,nquants);			-- call internal workhorse				

		return res;

	procedure strip_quants_in(tree,nquants);		-- strip a specified number of quantifiers from a formula
				-- this returns a pair [formula_tree,free_vars_list]; if there are not enough bound variables to strip, 
				-- then  nquants > free_vars_list upon return
		-- the allowed trees must represent formulas of one of the forms 
		-- (FORALL ...)
		-- (EXISTS ...)
		-- y in {e(x): ...} which is treated as (EXISTS ... | y = e(x))
		-- y notin {e(x): ...} which is treated as (FORALL ... | y /= e(x))

		-- s /= t for which only a collection of special cases are treated:
		-- if one of s and t, say t is explicitly null, this is treated as (EXISTS y in s)
		-- if s and t are setformers with identical iterators, this is treated as (EXISTS ... | e(x) /= e'(x) or not(P(x) •eq P'(x)))
		-- 		otherwise we merely conclude that there exists a c in one set but not the other

		-- trees of forms not amenable to processing are simply returned, along with a null list of variables.
		-- the elements of a conjunct are processed separately, and the generated lists of free variables
		-- are made disjoint and appended.
--printy(["tree: ",tree]);

		if is_string(tree) then return [tree,[]]; end if;			-- in this cases (basically an error) there are no bound vars to strip
		
		[n1,n2,n3] := tree;
		
		case n1			-- consider the various cases separately 

			when "ast_not" => 				-- negations
				
				if not is_tuple(n2) then return [tree,[]]; end if;			-- cannot process
				
				[m1,m2,m3] := n2;			-- unpack, and look for cases that can be handled
				
				case m1			-- consider various cases separately 
					
					when "ast_not" => return strip_quants_in(m2,nquants);				-- double negation
					
					when "ast_and","AMP_" => return strip_quants_in(["ast_or",["ast_not",m2],["ast_not",m3]],nquants);
										-- negated conjunction
					
					when "ast_or" => return strip_quants_in(["ast_and",["ast_not",m2],["ast_not",m3]],nquants);
										-- negated disjunction
			 
			 		when "DOT_IMP" => return strip_quants_in(["ast_and",m2,["ast_not",m3]],nquants);		-- rewrite as conjunction
				
					when "ast_forall" => return strip_quants_in(["ast_exists",m2,["ast_not",m3]],nquants);		-- use deMorgan Law
				
					when "ast_exists" => return strip_quants_in(["ast_forall",m2,["ast_not",m3]],nquants);		-- use deMorgan Law
					
					when "ast_in" => return strip_quants_in(["ast_notin",m2,m3],nquants);			-- reverse membership
					
					when "ast_notin" => return strip_quants_in(["ast_in",m2,m3],nquants);			-- reverse membership
					
					when "ast_eq" => return strip_quants_in(["ast_ne",m2,m3],nquants);				-- convert to inequality

					when "ast_ne" => return strip_quants_in(["ast_eq",m2,m3],nquants);				-- convert to equality
					
					
					when "ast_incs" => 			-- negated inclusion: not (m2 incs m3)
				
					
						if m2 = "0" or m2 = "_nullset" then return strip_quants_in(["ast_ne",m2,m3],nquants); end if;		-- treat as inequality
					
							-- otherwise look for identical iterators up to the number of quantifiers required
						if (m21 := m2(1)) /= (m31 := m3(1))	or (m21 /= "ast_genset" and m21 /= "ast_genset_noexp") then 
										-- merely assert existence of element in one set but not in other
							
							genvar := "VAR" + ((var_generator +:= 2) + 1) + "_";
							return [["ast_and",["ast_in",genvar,m3],["ast_notin",genvar,m2]],[genvar]];
						end if;
										-- otherwise we are comparing setformers with identical iterators
						if m21 = "ast_genset" then 		-- if these are both setformers with lead expreesssions
							[-,m22,m23,m24] := m2; [-,m32,m33,m34] := m3;		-- unpack the two setformers being compared
						else		-- otherwise these are both setformers without lead expreesssions
							[-,m23,m24] := m2; [-,m33,m34] := m3;		-- unpack the two setformers being compared
						end if;
						
						if m23 /= m33 then 			-- no special handling unless the iterators are the same
							genvar := "VAR" + ((var_generator +:= 2) + 1) + "_";
							return [["ast_and",["ast_in",genvar,m3],["ast_notin",genvar,m2]],[genvar]];
						end if;
							
							-- in this case, say that for some variables in the range of the iterators, either the conditions in the setformers (if any) are inequivalent 
							-- or the lead expressions of the setformers have different values
			
						s_andnot_f := if (m24 /= ["ast_null"]) and (m34 /= ["ast_null"]) then ["ast_and",["ast_not",m24],m34]	-- second condition does not imply the first
									elseif m24 /= ["ast_null"] then ["ast_not",m24]
									else []
									end if;
--print("<P>strip_quants_in1 ",m24," ",m34," "," ",s_andnot_f); 			
			
						if m21 = "ast_genset" then 			-- say that leading terms are not equal or second condition does not imply the first
							statbod := if s_andnot_f /= [] then ["ast_or",["ast_ne",m22,m32],s_andnot_f] else ["ast_ne",m22,m32] end if;
						elseif s_andnot_f = [] then
							statbod := "FALSE";	-- since the negated inclusion not ({x in s} incs {x in s | p2(x)}) is always false
						else
							statbod := s_andnot_f;	
								-- since the negated inclusion not ({x in s | p1(x)} incs {x in s | p2(x)}) is equivalent to (exists x in s | p2(x) and not p1(x))
						end if;
--print("<P>strip_quants_in ",(["ast_exists",m23,statbod?"BODYUNDEFINED"])," ",nquants," ast_true: ",ast_true); 			
--print("<P>strip_quants_in ",unparse(["ast_exists",m23,statbod])); 			
						return strip_quants_in(["ast_exists",m23,statbod],nquants);		-- convert into existential
	 						
					when "DOT_INCIN" => 			-- negated inclusion: not (m3 incs m2)
						
						return strip_quants_in([n1,["ast_incs",m3,m2]],nquants);			-- permute arguments and treat as preceding case
					
					otherwise => return [tree,[]];			-- cannot process

				end case;
				
			when "ast_and","AMP_" => [left_tree,left_vars] := strip_quants_in(n2,nquants);
				
				if (nlv := #left_vars) >= nquants then return [[n1,left_tree,n3],left_vars]; end if;
								-- only first conjunct need be processed

				[right_tree,right_vars] := strip_quants_in(n3,nquants - nlv); 	-- otherwise try to get remaining free variables 
				return [[n1,left_tree,right_tree],left_vars + right_vars];		-- from right-hand side of conjunction
				
			when "ast_or" => [left_tree,left_vars] := strip_quants_in(n2,nquants);
				
				if (nlv := #left_vars) >= nquants then return [[n1,left_tree,n3],left_vars]; end if;
								-- only first conjunct need be processed

				[right_tree,right_vars] := strip_quants_in(n3,nquants - nlv); 	-- otherwise try to get remaining free variables 
				return [[n1,left_tree,right_tree],left_vars + right_vars];		-- from right-hand side of disjunction
				
			when "DOT_IMP" => return strip_quants_in(["ast_or",["ast_not",n2],n3],nquants);		-- rewrite as disjunction
			
			when "ast_forall" => iter_list := n2(2..); quant_body := n3;		-- extract the iteration list

				if nquants < (nil := #iter_list) then 				-- use only the specified number of quantifiers
				  	
				  	il := iter_list(1..nquants);  
				 	[newvar_list,var_map] := setup_vars(il,0);
						-- second parameter designates nature of variable returned (universal or existential)

							-- build the formula with unsubstituted variables, and replace them with new variables 
				  	uns_form := ["ast_not",conjoin_iters(il,["ast_exists",[n2(1)] + iter_list(nquants + 1..),
				 						if quant_body(1) = "ast_not" then quant_body(2) else ["ast_not",quant_body] end if])];
--printy(["uns_form: ",uns_form,"\n",quant_body]);
				  	return [substitute(uns_form,var_map),newvar_list];
				  	
				elseif nquants = nil then  				-- use all the quantifiers

				 	[newvar_list,var_map] := setup_vars(iter_list,0);
				  	uns_form :=["ast_not", conjoin_iters(iter_list,if quant_body(1) = "ast_not" then quant_body(2) else ["ast_not",quant_body] end if)];
				  	
				  	return [substitute(uns_form,var_map),newvar_list];
				
				elseif (qb1 := quant_body(1)) /= "ast_forall" and qb1 /= "ast_exists" then
						  				-- use as many quantifiers as are available at this final level

				 	[newvar_list,var_map] := setup_vars(iter_list,0);
				  	uns_form := ["ast_not",conjoin_iters(iter_list,if quant_body(1) = "ast_not" then quant_body(2) else ["ast_not",quant_body] end if)];
				  	
				  	return [substitute(uns_form,var_map),newvar_list];
				
				else  	-- there are insufficiently many top level quantifiers; pursue to next level since the body starts with a quantifier 
					
					[newbod,vars_below] := strip_quants(quant_body,nquants - nil);
				 	[newvar_list,var_map] := setup_vars(iter_list,0);
				  	uns_form := ["ast_not",conjoin_iters(iter_list,if newbod(1) = "ast_not" then newbod(2) else ["ast_not",newbod] end if)];
				  	
				  	return [substitute(uns_form,var_map),newvar_list + vars_below];

				end if;
			
			when "ast_exists" => iter_list := n2(2..); quant_body := n3;		-- extract the iteration list

				if nquants < (nil := #iter_list) then 				-- use only the specified number of quantifiers
				  	
				  	il := iter_list(1..nquants);  
				 	[newvar_list,var_map] := setup_vars(il,1);
						-- second parameter designates nature of variable returned (universal or existential)

							-- build the formula with unsubstituted variables, and replace them with new variables 
				  	uns_form := conjoin_iters(il,[n1,[n2(1)] + iter_list(nquants + 1..),quant_body]);

				  	return [substitute(uns_form,var_map),newvar_list];
				  	
				elseif nquants = nil then  				-- use all the quantifiers

				 	[newvar_list,var_map] := setup_vars(iter_list,if n1 = "ast_forall" then 0 else 1 end if);
				  	uns_form := conjoin_iters(iter_list,quant_body);
				  	
				  	return [substitute(uns_form,var_map),newvar_list];
				
				elseif (qb1 := quant_body(1)) /= "ast_forall" and qb1 /= "ast_exists" then
						  				-- use as many quantifiers as are available at this final level

				 	[newvar_list,var_map] := setup_vars(iter_list,if n1 = "ast_forall" then 0 else 1 end if);
				  	uns_form := conjoin_iters(iter_list,quant_body);
				  	
				  	return [substitute(uns_form,var_map),newvar_list];
				
				else  	-- there are insufficiently many top level quantifiers; pursue to next level since the body starts with a quantifier 
					
					[newbod,vars_below] := strip_quants(quant_body,nquants - nil);
				 	[newvar_list,var_map] := setup_vars(iter_list,if n1 = "ast_forall" then 0 else 1 end if);
				  	uns_form := conjoin_iters(iter_list,newbod);
				  	
				  	return [substitute(uns_form,var_map),newvar_list + vars_below];

				end if;

			when "ast_in" => 
				
				the_memb := n2; setformer_tree := n3;

				if not is_tuple(setformer_tree) then return [tree,[]]; end if;
				[m1,m2,m3,m4] := setformer_tree;
				
				if m1 = "ast_genset" then			-- general setformer; treat as disguised existential  
				
					quant_body := if m4 /= ["ast_null"] then ["ast_and",["ast_eq",the_memb,m2],m4] else ["ast_eq",the_memb,m2] end if;
								-- use this as 'body' of existential
					iter_list := m3(2..);

					if nquants < (nil := #iter_list) then 				-- use only the specified number of quantifiers
	
						il := iter_list(1..nquants);
						[newvar_list,var_map] := setup_vars(il,1);
						
						uns_form := conjoin_iters(il,["ast_exists"] + iter_list(nquants + 1..) with quant_body);
				  		
						return [substitute(uns_form,var_map),newvar_list];

					else				-- use the whole iter_list
							
						[newvar_list,var_map] := setup_vars(iter_list,1);
						uns_form := conjoin_iters(iter_list,quant_body);
					
					  	return [substitute(uns_form,var_map),newvar_list];
	
					end if;
					
				elseif m1 = "ast_genset_noexp" then			-- setformer without lead expression (can be just one iter)

					[iter_kind,iter_var,iter_restriction] := (iter_list := m2(2..))(1);
					newbod := if m3 = ["ast_null"] then [iter_kind,the_memb,iter_restriction]
							else ["ast_and",[iter_kind,the_memb,iter_restriction],substitute(m3,{[iter_var,the_memb]})] end if;
					
					return [newbod,[]];		-- in this case the bound variable of the iterator has already been replaced
				
				else			-- not a setformenr
					return [tree,[]]; 
				end if;

			when "ast_notin" => the_nonmemb := n2; setformer_tree := n3;

				the_memb := n2; setformer_tree := n3;

				if not is_tuple(setformer_tree) then return [tree,[]]; end if;
				[m1,m2,m3,m4] := setformer_tree;
				
				if m1 = "ast_genset" then			-- general setformer; treat as disguised existential  
				
					quant_body := if m4 /= ["ast_null"] then ["ast_and",["ast_eq",the_memb,m2],m4] else ["ast_eq",the_memb,m2] end if;
								-- use this as 'body' of existential
					iter_list := m3(2..);

					if nquants < (nil := #iter_list) then 				-- use only the specified number of quantifiers
	
						il := iter_list(1..nquants);
						[newvar_list,var_map] := setup_vars(il,0);
						uns_form := ["ast_not",conjoin_iters(il,["ast_exists"] + iter_list(nquants + 1..) with quant_body)];

						return [substitute(uns_form,var_map),newvar_list];

					else				-- use the whole iter_list
						
						[newvar_list,var_map] := setup_vars(iter_list,0);
						uns_form := ["ast_not",conjoin_iters(iter_list,quant_body)];

						return [substitute(uns_form,var_map),newvar_list];
	
					end if;
					
				elseif m1 = "ast_genset_noexp" then			-- setformer without lead expression (can be just one iter)

					[iter_kind,iter_var,iter_restriction] := (iter_list := m2(2..))(1);
					newbod := if m3 = ["ast_null"] then [iter_kind,the_memb,iter_restriction]
							else ["ast_and",[iter_kind,the_memb,iter_restriction],substitute(m3,{[iter_var,the_memb]})] end if;
					
					return [["ast_not",newbod],[iter_var]];		-- in this case the bound variable of the iterator has already been replaced
				
				else			-- not a setformenr

					return [tree,[]]; 

				end if;
 
 			when "ast_ne" => 

		-- in this case only certain special cases are treated:
		-- if one of s and t, say t is explicitly null, this is treated as (EXISTS y in s)
		-- if s and t are setformers with identical iterators, this is treated as (EXISTS ... | e(x) /= e'(x) or not(P(x) •eq P'(x)))
		-- 		otherwise we merely conclude that there exists a c in one set but not the other

			if n2 = "0" or n2 = "_nullset" then [n2,n3] := [n3,n2]; end if;		-- if nullset present, standardize it as final variable
			
			if n3 = "0" or n3 = "_nullset" then 			-- treat as existential

				if not is_tuple(n2) or ((n21 := n2(1)) /= "ast_genset" and n21 /= "ast_genset_noexp") then 
					return [["ast_in",genvar := "VAR" + ((var_generator +:= 2) + 1) + "_",n2],[genvar]];
				 							-- convert to existential membership statement
				end if;
								-- otherwise treat as existential
				if n21 = "ast_genset" then 
			
					[-,-,iters,cond] := n2; if cond = ["ast_null"] then cond := "true"; end if;
					
				else		-- "ast_genset_noexp" case 
				
					[-,iters,cond] := n2; if cond = ["ast_null"] then cond := "true"; end if;

				end if;

				return strip_quants_in(["ast_exists",iters,cond],nquants);		-- convert into existential

			end if;
			
					-- otherwise look for identical iterators up to the number of quantifiers required
			if (n21 := n2(1)) /= (n31 := n3(1))	or (n21 /= "ast_genset" and n21 /= "ast_genset_noexp") then 
							-- merely assert existence of element in one set but not in other
				
				genvar := "VAR" + ((var_generator +:= 2) + 1) + "_";
				return [["ast_or",["ast_and",["ast_in",genvar,n2],["ast_notin",genvar,n3]],["ast_and",["ast_notin",genvar,n2],["ast_in",genvar,n3]]],[genvar]];
			end if;

			if n21 = "ast_genset" then 
				[-,m22,m23,m24] := n2; [-,m32,m33,m34] := n3;		-- unpack the two setformers being compared
			else
				[-,m23,m24] := n2; [-,m33,m34] := n3;		-- unpack the two setformers being compared
			end if;
			
			if m23 /= m33 then 			-- no special handling unless the iterators are the same
				genvar := "VAR" + ((var_generator +:= 2) + 1) + "_";
				return [["ast_or",["ast_and",["ast_in",genvar,n2],["ast_notin",genvar,n3]],["ast_and",["ast_notin",genvar,n2],["ast_in",genvar,n3]]],[genvar]];
			end if;
				
				-- in this case, say that for some variables in the range of the iterators, either the conditions in the setformers (if any) are inequivalent 
				-- or the lead expressions of the setformers have different values

			conds_ineq := if m24 /= ["ast_null"] and m34 /= ["ast_null"] then
							["ast_or",["ast_and",m24,["ast_not",m34]],["ast_and",["ast_not",m24],m34]]
						elseif m24 /= ["ast_null"] then
							["ast_not",m24]
						elseif m34 /= ["ast_null"] then
							["ast_not",m34]
						else
							[]
						end if;

			if n21 = "ast_genset" then 			-- say that leading terms are not equal or conditions not equivalent
				statbod := if conds_ineq /= [] then ["ast_or",["ast_ne",m22,m32],conds_ineq] else ["ast_ne",m22,m32] end if;
			else
				statbod := conds_ineq;
			end if;

			return strip_quants_in(["ast_exists",m23,statbod],nquants);		-- convert into existential
 
 			when "ast_eq" => 

		-- in this case only certain special cases are treated:
		-- if one of s and t, say t is explicitly null, this is treated as (FORALL y in s | not P(y) )
		-- 		otherwise we merely conclude that there exists no c in one set but not the other

			if n2 = "0" or n2 = "_nullset" then [n2,n3] := [n3,n2]; end if;		-- if nullset present, standardize it as final variable
			
			if n3 = "0" or n3 = "_nullset" then 			-- treat as universal

				if not is_tuple(n2) or ((n21 := n2(1)) /= "ast_genset" and n21 /= "ast_genset_noexp") then 
					return [["ast_notin",genvar := "VAR" + (var_generator +:= 2) + "_",tree],[genvar]];
				 							-- convert to universal nonmembership statement
				end if;
								-- otherwise treat as universal
				if n21 = "ast_genset" then 
			
					[-,-,iters,cond] := n2; if cond = ["ast_null"] then cond := "true"; end if;
					
				else		-- "ast_genset_noexp" case 
				
					[-,iters,cond] := n2; if cond = ["ast_null"] then cond := "true"; end if;

				end if;

				return strip_quants_in(["ast_forall",iters,["ast_not",cond]],nquants);		-- convert into universal

			end if;

			genvar := "VAR" + ((var_generator +:= 2) + 1) + "_";
			return [["ast_or",["ast_and",["ast_in",genvar,n2],["ast_notin",genvar,n3]],["ast_and",["ast_notin",genvar,n2],["ast_in",genvar,n3]]],[genvar]];


 			when "ast_incs" => 

		-- in this case only certain special cases are treated:
		-- the first argument is explicitly null, this is treated as (FORALL y in s | not P(y) )
		-- 		otherwise we merely conclude that there exists no c in the first set but not in the second
			
				if n2 = "0" or n2 = "_nullset" then 			-- treat as equality
					
					return strip_quants_in(["ast_eq",n2,n3],nquants);
				
				end if;
	
			
				genvar := "VAR" + ((var_generator +:= 2) + 1) + "_";
				return [["ast_not",["ast_and",["ast_in",genvar,n2],["ast_notin",genvar,n3]]],[genvar]];

 			when "DOT_INCIN" => return strip_quants_in(["ast_incs",n3,n2],nquants);			-- treat as reversed 'incs'

 			when "DOT_NINCIN" => return strip_quants_in(["ast_not",["ast_incs",n3,n2]],nquants);			-- treat as negated reversed 'incs'

 			when "DOT_NINCS" => return strip_quants_in(["ast_not",["ast_incs",n2,n3]],nquants);			-- treat as negated 'incs'

			otherwise => return [tree,[]]; 			-- cases not amenable to treatment
			
		end case;
		
	end strip_quants_in;
				 	
		procedure setup_vars(il,offs); -- 'offs' flags nature of variable returned (universal or existential)
		  	var_list := [if is_tuple(iter) then iter(2) else iter end if: iter in il];
		  	newvar_list := ["VAR" + ((var_generator +:= 2) + offs) + "_": v in var_list];
		  	var_map := {[v,newvar_list(j)]: v = var_list(j)};
		  	
			return [newvar_list,var_map];
		end setup_vars;
		
	end strip_quants;
	
	procedure conjoin_iters(list_of_iters,quant_body);	-- conjoin list of iterators to formula body
			-- unrestricted iterators are ignored
			for j in [nli := #list_of_iters,nli - 1..1] | is_tuple(iter := list_of_iters(j)) and iter(3) /= "OM" loop
				quant_body := ["ast_and",iter,quant_body];
			end loop;
--printy(["quant_body: ",quant_body]);
		return quant_body;

	end conjoin_iters;

	procedure ordered_free_vars(node); 		-- find the free variables in a tree, in order of occurrence (main entry) 
		ordrd_free_vars := []; ordered_free_vars_in(node,[]); return ordrd_free_vars;
			-- use the recursive workhorse and a global variable
	end ordered_free_vars;

	procedure ordered_free_vars_in(node,bound_vars); 		-- find the free variables in a tree (recursive workhorse)

		if is_string(node) then 
			if node notin bound_vars and node /= "OM" and node /= "_nullset"and node notin ordrd_free_vars
				 and node notin special_set_names then ordrd_free_vars with:= node; end if;
			 return; 
		end if; 

		case (ah := abbreviated_headers(node(1)))

			when "and","or","==","+","-","{-}","in","notin","/==","=","/=","[]","[-]","{.}","itr","Etr","incs","incin","imp","*","->","not","null" => -- ordinary operators

				for sn in node(2..) loop ordered_free_vars_in(sn,bound_vars); end loop;

			when "arb","range","domain" => -- ordinary operators

				for sn in node(2..) loop ordered_free_vars_in(sn,bound_vars); end loop;

			when "()" => 				-- this is the case of functional and predicate application; the second variable is a reserved symbol, not a set

				for sn in node(3..) loop ordered_free_vars_in(sn,bound_vars); end loop;

			when "{}","{/}","EX","ALL" =>
			 	bound_vars +:= (fbv := find_bound_vars(node)); 			-- setformer or quantifier; note the bound variables
--printy(["ordered_free_vars_in: ",node," bound vars in node: ",fbv]);
				for sn in node(2..) loop ordered_free_vars_in(sn,bound_vars); end loop;		-- collect free variables in args

			when "@" => 							-- functional application

				for sn in node(2..) loop ordered_free_vars_in(sn,bound_vars); end loop;		-- collect free variables in args

			otherwise => 		-- additional infix and prefix operators, including if-expressions

				for sn in node(2..) loop ordered_free_vars_in(sn,bound_vars); end loop;		-- collect free variables in args
		
		end case;
		
	end ordered_free_vars_in;

 	procedure remove_arguments(node,fcn_list);			-- remove arguments from list of functions

		ordrd_free_vars := []; 
--printy(["remove_arguments: ",unparse(node)]);
		return remove_arguments_in(node,fcn_list,[]);	-- use the recursive workhorse and a global variable
 		
	end remove_arguments;			
 
 	procedure remove_arguments_in(node,fcn_list,bound_vars);			-- remove arguments from list of functions

		if is_string(node) then return node; end if; 

		case (ah := abbreviated_headers(n1 := node(1)))

			when "and","or","==","+","-","{-}","in","notin","/==","=","/=","[]","[-]","{.}","itr","Etr","incs","incin","imp","*","->","not","null" => -- ordinary operators

				return [n1] + [remove_arguments_in(sn,fcn_list,bound_vars): sn in node(2..)];

			when "arb","range","domain" => -- ordinary operators

				return [n1] + [remove_arguments_in(sn,fcn_list,bound_vars): sn in node(2..)];

			when "()" => 				-- this is the case of functional and predicate application

				if (n2 := node(2)) in fcn_list then return n2; end if;
				
				return [n1,n2] + [remove_arguments_in(sn,fcn_list,bound_vars): sn in node(3..)];

			when "{}","{/}","EX","ALL" => 
				
				bound_vars +:= find_bound_vars(node); 			

				return [n1] + [remove_arguments_in(sn,fcn_list,bound_vars): sn in node(2..)];

			when "@" => 							-- functional application

				return [n1] + [remove_arguments_in(sn,fcn_list,bound_vars): sn in node(2..)];

			otherwise => 		-- additional infix and prefix operators, including if-expressions

				return [n1] + [remove_arguments_in(sn,fcn_list,bound_vars): sn in node(2..)];		
		
		end case;
	end remove_arguments_in;			
 
	procedure symbol_occurences(tree,symbol_list);
				-- finds list of free occurrences of symbols in the indicated symbol list, and returns the list of such nodes
 		list_of_symbol_occurences := [];		-- the symbol occurrences are returned as pairs 
 		symbol_occurences_in(tree,symbol_list,{}); -- use the recursive workhorse and a global variable 
 		return list_of_symbol_occurences; 
 		
 	end symbol_occurences;

	procedure symbol_occurences_in(node,symbol_list,bound_vars);
	 		-- finds list of free occurrences of symbols in the indicated symbol list (recursive workhorse)

		if is_string(node) and node in symbol_list then 
 
 			if node notin bound_vars and node /= "OM" and node /= "_nullset"and node notin list_of_symbol_occurences
				 and node notin special_set_names then 
				list_of_symbol_occurences with:= [bound_vars,node]; 
			end if;

			return; 

		end if; 

		case (ah := abbreviated_headers(node(1)))

			when "and","or","==","+","-","{-}","in","notin","/==","=","/=","[]","[-]","{.}","itr","Etr","incs","incin","imp","*","->","not","null" => -- ordinary operators

				for sn in node(2..) loop symbol_occurences_in(sn,symbol_list,bound_vars); end loop;

			when "arb","range","domain" => -- ordinary operators

				for sn in node(2..) loop symbol_occurences_in(sn,symbol_list,bound_vars); end loop;

			when "()" => 				-- this is the case of functional and predicate application; the second variable is a reserved symbol, not a set
--printy(["symbol_occurences_in: ",node," ",symbol_list]);				
				if (n2 := node(2)) in symbol_list then 
					list_of_symbol_occurences with:= [bound_vars,n2,node(3)(2..)];
				end if; 
 
 				for sn in node(3..) loop symbol_occurences_in(sn,symbol_list,bound_vars); end loop;

			when "{}","{/}","EX","ALL" => 
					
				bound_vars +:= {x: x in find_bound_vars(node)}; 			-- setformer or quantifier; note the bound variables

				for sn in node(2..) loop symbol_occurences_in(sn,symbol_list,bound_vars); end loop;		-- collect free variables in args

			when "@" => 							-- functional application

				for sn in node(2..) loop symbol_occurences_in(sn,symbol_list,bound_vars); end loop;		-- collect free variables in args

			otherwise => 		-- additional infix and prefix operators, including if-expressions

				for sn in node(2..) loop symbol_occurences_in(sn,symbol_list,bound_vars); end loop;		-- collect free variables in args
		
		end case;
		
	end symbol_occurences_in;
	
	procedure free_vars_and_fcns(thm);			-- get all the free variables and functions of a theorem
		[fvs,fcns] := find_free_vars_and_fcns(parse_expr(thm + ";"));  
		return fvs + fcns;	 
	end free_vars_and_fcns;
	
	procedure fully_quantified(theory_nm,thm);		-- construct the  fully quantified form of a theorem in a theory

		ancestor_theories := [theory_nm]; cur_th := theory_nm;				-- construct the chain of ancestor theories
		while (cur_th := parent_of_theory(cur_th)) /= OM loop		-- of the theory containing the theorem
			ancestor_theories with:= cur_th;
		end loop;
		
		dont_quantify := {} +/ [def_in_theory(thry)?{}: thry in ancestor_theories];
			 	-- all the constants of the theory containing the theorem to be applied, and the ancestors of that theory

		freevs := [v: v in freevars_of_theorem(theory_nm,thm) | v notin dont_quantify];
				-- get all the free variables of a theorem statement (in string form) given its theory

		return if freevs = [] then thm else "(FORALL " + join(freevs,",") + " | " + thm + ")" end if;
			 
	end fully_quantified;

	procedure fully_quantified_external(theory_nm,thm);
				-- construct the  fully quantified form of a theorem in an external theory
				-- this is like the preceding theorem, but t conditions the quantified result returned by an 'In_domain' clause

		ancestor_theories := [theory_nm]; cur_th := theory_nm;				-- construct the chain of ancestor theories
		while (cur_th := parent_of_theory(cur_th)) /= OM loop		-- of the theory containing the theorem
			ancestor_theories with:= cur_th;
		end loop;
		
		dont_quantify := {} +/ [def_in_theory(thry)?{}: thry in ancestor_theories];
			 	-- all the constants of the theory containing the theorem to be applied, and the ancestors of that theory

		freevs := [v: v in freevars_of_theorem(theory_nm,thm) | v notin dont_quantify];
				-- get all the free variables of a theorem statement (in string form) given its theory
		domain_membership_clause := if #freevs > 1 then "(" else "" end if + join(["In_domain(" + v + ")": v in freevs]," & ")
			+ if #freevs > 1 then ")" else "" end if + " ¥imp (";
--			+ if #freevs > 1 then ")" else "" end if + " •imp (";			-- Mac version
		return if freevs = [] then thm else "(FORALL " + join(freevs,",") + " | " + domain_membership_clause + thm + "))" end if;
			 
	end fully_quantified_external;

	procedure freevars_of_theorem(theory_nm,thm);		-- find the quantifiable free variables of a theorem, given theory
		fv := ordered_free_vars(parsed_thm := parse_expr(thm + ";")(2)); 		-- get the free variables of the theorem	
--printy(["def_in_theory(theory_nm): ",theory_nm," ",def_in_theory(theory_nm)]);
		assumed_symbols_of_theory := {}; 
		for fcn_with_args in assumps_and_consts_of_theory(theory_nm)(1) loop
			symb_part := break(fcn_with_args,"("); assumed_symbols_of_theory with:= case_change(symb_part,"lu"); 
		end loop;
--printy(["assumed_symbols_of_theory: ",assumed_symbols_of_theory]);		
		return [x: x in fv | x notin (def_in_theory(theory_nm)?{}) and x notin assumed_symbols_of_theory];			
					-- return the free variables, eliminating defined constants, outputs, and assumed symbols 
	end freevars_of_theorem;

 	procedure not_all_alph(stg); span(stg,"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_¥•"); return stg /= ""; end not_all_alph;

	--      ***************************************************************************************
	--      ************* Utilities for statistical analysis of the proof scenarios ***************
	--      ***************************************************************************************

	procedure get_hints(proofno1,proofno2);		-- examine the hints which occur in a given range of proofs and report statistics
 
		if digested_proof_handle = OM then			-- read the full tuple of digested proofs if they have not already been read
			init_logic_syntax_analysis();			-- obligatory initialization
			digested_proof_handle ?:= open(user_prefix + "digested_proof_file","TEXT-IN");
			reada(digested_proof_handle,digested_proofs); --printy([#digested_proofs]);
		end if;
		
		counts := {};

		for proofno in [proofno1..proofno2],[hint,stat] in digested_proofs(proofno)(2..) loop


			span(hint," \t"); match(hint,"Proof+:"); match(hint,"Proof:"); span(hint," \t"); rspan(hint," \t"); num := rspan(hint,"0123456789ax_"); nh := #hint;
			if num /= "" and nh > 0 and hint(nh) = "T" then hint := "Thm_citation"; 
 			elseif num /= ""and nh > 4 and hint(nh - 3..nh) = "Stat" then hint := "Stat_Instance"; 
 			elseif  nh > 5 and hint(nh - 4..nh) = "Ax_ch" then hint := "Ax_ch"; 
 			elseif  nh > 6 and hint(nh - 5..nh) = "Assump" then hint := "Theory_Assumption"; 
 			elseif  nh > 11 and hint(nh - 10..nh) = "KBAlgebraic" then hint := "KBAlgebraic"; 
			elseif  nh > 5 and hint(1..5) = "APPLY" then hint := "Theory_Application"; 
			elseif hint(nh) = "." then hint := "Theorem_cite_in_theory"; 
			elseif nh > 0 and hint(nh) = ")" then rbreak(hint,"("); rmatch(hint,"("); 
			elseif nh > 0 and hint(1) = "(" then break(hint,")"); match(hint,")"); end if;

			counts(hint) := (counts(hint)?0) + 1; 
 
  		end loop;

		tup := merge_sort([[y,x]: [x,y] in  counts]); for j in [#tup,#tup - 1..1] loop printy([tup(j)]); end loop;

 	end get_hints;

	procedure view_theorem_citations(proofno1,proofno2);		-- count the number of theorem citations in a given range, and print them

		if digested_proof_handle = OM then			-- read the full tuple of digested proofs if they have not already been read
			init_logic_syntax_analysis();			-- obligatory initialization
			digested_proof_handle ?:= open(user_prefix + "digested_proof_file","TEXT-IN");
			reada(digested_proof_handle,digested_proofs); --printy([#digested_proofs]);
		end if;

		if theorem_map_handle = OM then			-- read the theorem_map fies if it has not already been read
			init_logic_syntax_analysis();			-- obligatory initialization
			theorem_map_handle ?:= open("theorem_map_file","TEXT-IN");
			reada(theorem_map_handle,theorem_map); --printy([#digested_proofs]);
		end if;

		count := 0;
		for proofno in [proofno1..proofno2],[hint,stat] in digested_proofs(proofno)(2..) loop

			span(hint," \t"); match(hint,"Proof+:"); match(hint,"Proof:"); span(hint," \t"); rspan(hint," \t"); num := rspan(hint,"0123456789ax_"); nh := #hint;
			if  num /= ""  and nh > 0 and hint(nh) = "T" then hint := "T" + num; 
				printy([proofno," ",hint," ",theorem_map(hint),"\n    -- ",stat]); count +:= 1;
			end if;
  		end loop;
		
		printy(["Number of citations: ",count]);
 	end view_theorem_citations;

	procedure inspect_proofs(tup_of_numbers);		-- inspect a specified list of proofs, from digested_proof_file
		reada(handl := open(user_prefix + "digested_proof_file","TEXT-IN"),dpf);			
	
		printy(["Number of proofs in file of digested proofs: ",#dpf]); 
		
		for pfno in tup_of_numbers loop
			if (pf := dpf(pfno)) = OM then
				printy(["\nProof ",pfno," not found"]); continue;
			end if;
			printy(["\nProof ",pfno,":"]);
								-- bypass the prefixed proof identifier
			for [hint,prbody] in pf(2..) loop printy([(hint + 40 * " ")(1..40),prbody]); end loop;			-- list the proof, with its hints
		end loop;
		close(handl);
	end inspect_proofs;

			--      ***********************************************************************
			--      ********** Code for automated optimization of proof scenarios *********
			--      ***********************************************************************

	procedure search_for_all_w_extra(stat_tup,extra_clause);		-- searches for all of the critical items in a range, no supplementary clause

		extra_conj := extra_clause;					-- note extra clause
		return search_for_all_gen(stat_tup);		-- call general form

	end search_for_all_w_extra;

	procedure search_for_all(stat_tup);		-- searches for all of the critical items in a range, no supplementary clause

		extra_conj := OM;							-- note that there is no extra clause
		return search_for_all_gen(stat_tup);		-- call general form

	end search_for_all;

	procedure search_for_all_gen(stat_tup);		-- searches for all of the critical items in a range, general form
		-- here tup should be the full context preceding a designated statment
		-- we apply a test which is passed only if we have all the critical items,
		-- i.e. the conjuction of the known criticals with the tup of line numbers passed to the 
		-- test_range function seen below yields a rproof of the last line
	
		best_time_so_far := 1000000;			-- for determining optimal time
		
		statement_tuple_being_searched := stat_tup;			-- globalize, for use in other procedures of this group
		tup := [1..#stat_tup];			-- the tuple of line numbers in the statement list passed in
		
		known_criticals := {};			-- lines already known to be critical
		nt := #tup;						-- length of the tuple
		search_past := 0;				-- start by searching the entire tuple, known to pass the test
		examine_tup := tup;				-- start by examing the entire tuple
		prior_critical := 0;
debug_count := 150;		 
		while (critical := search_in(examine_tup)) < #examine_tup loop
				-- this delivers a critical value, or nt if that (or none) is critical
				-- the critical value found is the first in the tuple being examined
--print("<BR>critical: ",critical," ",examine_tup);	
			if critical < (nexat := #examine_tup - 1) and critical > 0 then 
				known_criticals with:= (prior_critical +:= critical); 
				examine_tup := examine_tup(critical + 1..);
			elseif not test_range([]) then 			-- the last element is vital
				known_criticals with:= (prior_critical + nexat); 
				exit;			-- since in this this case there is no more to be searched
			else 									-- the last element is not vital
				exit;
			end if;
if(debug_count -:= 1) < 0 then print("<P>looping"); stop; end if;
		end loop;
	
		if not test_range([x + prior_critical: x in examine_tup]) then known_criticals with:= 1; end if;
 --print("<P>known_criticals: ",known_criticals);		
		return merge_sort(known_criticals);
		
	end search_for_all_gen;
		
	procedure search_in(tup);		-- searches a tuple for the start of a critical range,
									-- located by a subfunction test_range
	
		start_point := (nt := #tup) - 1;		-- start search with smallest tuple suffix
		too_large := OM;						-- the smallest start point which is too large
		
		while start_point > 1 loop		-- expanding search; keep doubling the range
		
			if test_range(tup(start_point..)) then exit; end if;
			
			too_large := start_point;			-- the current range starting point is too large
			start_point -:= (nt - start_point); 
	
		end loop;
	
		start_point max:= 1;				-- start of the range that must be binary-searched
		
		hi := too_large?(nt - 1);			-- value that is probably too large
	
		while hi - start_point > 1 loop		-- standard binary search; keep halving the range
			
			mid := (start_point + hi) /2;
			
			if not test_range(tup(mid..)) then 
				hi := mid;					-- the mid is too high
			else
				start_point := mid;			-- the mid is not too high
			end if;
			
		end loop;
		 
		return if not test_range(tup(hi..)) then start_point else hi end if;
	
	end search_in;
	
	procedure test_range(tup);		-- tests a range in a tuple to see if it is large enough

		statements_to_use := [statement_tuple_being_searched(lix): lix in merge_sort(known_criticals) + tup];
		conj := form_elem_conj("",statements_to_use);			-- use all the statements in the collection passed,
		
		starting_cycles := opcode_count();		-- note start time for this verification attempt
		-- inverting the last
--print("<BR>conj in test_range: ",conj); 
		test_conj(if extra_con /= OM then "(" + extra_conj + ") and (" + conj + ")" else conj end if);
							-- test this (possibly extended) conjunct for satisfiability
		
		if tested_ok then best_time_so_far min:= ((opcode_count() - starting_cycles) / oc_per_ms); end if;
								-- keep track of best successful step time
		return tested_ok;
		
--		return (#known_criticals + #[j: x = tup(j) | x = 1]) >= tot_num_criticals;
		
	end test_range;

			--      ***********************************************************************
			--      ******************* Miscellaneous input utilities *********************
			--      ***********************************************************************

	procedure read_range(stg);			-- convert to list of proofs to be printed; force range indicator to legal form and return it
		stg := suppress_chars(stg," \t");
		good := span(stg,",.0123456789");
		if stg /= "" then return OM; end if;

		pieces := [x: x in segregate(good,".,") | x /= ""];
		if pieces = [] then pieces := ["1"]; end if;		-- be prepared to handle empty pieces
		if pieces(1)(1) in ".," then pieces := pieces(2..); end if;		-- no separators at start
		if pieces(np := #pieces)(1) in ".," then pieces := pieces(1..np - 1); end if;	-- or at end

		pieces := "" +/ [if x(1) = "." then ".." elseif x(1) = "," then "," else x end if: x in pieces];
		pieces := [first_last(x): x in breakup("" +/ pieces,",")];

		return [] +/ pieces;	 			
	end read_range;

	procedure first_last(stg);			-- reduce dotted ranges to first and last elements, and read

		if "." notin stg then return [unstr(stg)]; end if; 
		lend := break(stg,"."); rend := rbreak(stg,"."); 
		return [unstr(lend)..unstr(rend)];
	end first_last;
	
end verifier_top_level;

-- *****************************************************************
-- ************ Test routines for 'Proof by Structure' *************
-- *****************************************************************

program test;			-- tests for proof_by_structure
	use proof_by_structure, string_utility_pak,parser,logic_syntax_analysis_pak,logic_syntax_analysis_pak2;
	init_logic_syntax_analysis(); 		-- initialize for logic syntax-tree operations
	
--	test_basic_descriptor_actions(); 		-- test effect of basci operators on descriptors
--	test_compound_expressions(); 			-- test effect of compound expressions on descriptors
	test_descriptor_extraction();			-- test the top level descriptor extraction routine

procedure test_descriptor_extraction();			-- test the top level descriptor extraction routine

	print("\ntest_extract_relevant_descriptors for: ",stg := "(arb(s) in s) and Ord(s)");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(enum(x,t) in s) and Ord(s)");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(#t in #r) and Ord(#r)");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(x •PLUS y) in Za");
	test_extract_relevant_descriptors(stg);

stop;
	print("\ntest_extract_relevant_descriptors for: ",stg := "Countable(u) and Finite(v) and h = {[x + y,e(x,y)]: x in u, y in v | P(x,y)}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "Countable(u) and Countable(v) and h = {[x + y,e(x,y)]: x in u, y in v | P(x,y)}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "Finite(u) and Finite(v) and h = {[x + y,e(x,y)]: x in u, y •incin v | P(x,y)}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "Finite(u) and Countable(v) and h = {[x + y,e(x,y)]: x •incin u, y •incin v | P(x,y)}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(u /= 0) and h = {[x,e(x)]: x in u}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(u /= 0) and h = {[x,e(x)]: x in u | P(x)}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(not Finite(u)) and h = {[x,e(x)]: x in u}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(not Finite(u)) and h = {[x,e(x)]: x in u | P(x)}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(u /= 0) and (not(v = 0)) and h = {[x + y,e(x,y)]: x in u, y in v}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(u /= 0) and (not(v = 0)) and h = {[x + y,e(x,y)]: x in u, y in v}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(u /= 0) and h = {[x + y,e(x,y)]: x in u, y in v}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(not(v = 0)) and h = {[x + y,e(x,y)]: x in u, y in v}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(u /= 0) and (not Finite(v)) and h = {[x + y,e(x,y)]: x in u, y in v}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(not Finite(u)) and (not Finite(v)) and h = {[x + y,e(x,y)]: x in u, y in v}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(u /= 0) and (not Finite(v)) and h = {[x + y,e(x,y)]: x in u, y in v | P(x,y)}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(not Finite(u)) and (not Finite(v)) and h = {[x + y,e(x,y)]: x in u, y in v | P(x,y)}");
	test_extract_relevant_descriptors(stg);


	print("\ntest_extract_relevant_descriptors for: ",stg := "Finite(u) and Finite(v) and h = {[x + y,e(x,y)]: x in u, y in v | P(x,y)}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "Finite(x) and ((y + w) in u) and (not Finite(y)) and (Svm(y)) and (one_1_map(y)) and (Is_map(w)) and (y •incin w) and (u •incin Za) and h = {[x,e(x)]: x in u}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "Finite(x) and (not y = 0) and (Svm(y)) and (one_1_map(y)) and (Is_map(w)) and (y •incin w) and (u •incin Za) and h = {[x,e(x)]: x in u}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "Finite(x) and (y /= 0) and (Svm(y)) and (one_1_map(y)) and (Is_map(w)) and (y •incin w) and (u •incin Za) and h = {[x,e(x)]: x in u}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(u •incin Za) and h = {[x •PLUS y,e(x,y)]: x in u, y in u - v}");
	test_extract_relevant_descriptors(stg);

	print("\ntest_extract_relevant_descriptors for: ",stg := "(u •incin Za) and (h = x •PLUS y) and (x in u) and (y in u - v)");
	test_extract_relevant_descriptors(stg);

end test_descriptor_extraction;
	
	procedure test_extract_relevant_descriptors(stg); 
	
		tree := parse_expr(stg + ";"); print(get_assertions_from_descriptors(erd := extract_relevant_descriptors(tree(2)))); -- ," ",erd

	end test_extract_relevant_descriptors;
	
	procedure test_compound_expressions(); 		-- test effect of compound expressions on descriptors

		vars_to_descriptors := {["S",{{"ZA"}}]};
		print("descriptor for expression ",estg := "{if a(x) then x •PLUS y elseif b(x) then x •TIMES y else x end if: x in s, y in s}"," with variable descriptors ",
					vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression

		vars_to_descriptors := {["S",{{"ZA"}}]};
		print("descriptor for expression ",estg := "{if a(x) then x •PLUS y elseif b(x) then x •TIMES y else x + y end if: x in s, y in s}"," with variable descriptors ",
					vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression

		vars_to_descriptors := {["X",{"FIN","NONNULL"}],["Y",{"FIN"}]};
		print("descriptor for expression ",estg := "if a then x else y end if"," with variable descriptors ",
					vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression

		vars_to_descriptors := {["X",{"FIN","NONNULL"}],["Y",{"FIN","NONNULL"}],["Z",{"FIN"}]};
		print("descriptor for expression ",estg := "if a then x elseif b then  y else z end if"," with variable descriptors ",
					vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression

		vars_to_descriptors := {["X",{"FIN","NONNULL"}],["Y",{"FIN","NONNULL"}],["Z",{"FIN","NONNULL"}]};
		print("descriptor for expression ",estg := "if a then x elseif b then  y else z end if"," with variable descriptors ",
					vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression

		vars_to_descriptors := {["X",{"FIN","NONNULL",{"ZA"}}]};
		print("descriptor info ",vars_to_descriptors," translates as ", get_assertions_from_descriptors(vars_to_descriptors));
	
		vars_to_descriptors := {["X",{"INFIN","NONNULL",{"ZA"}}]};
		print("descriptor info ",vars_to_descriptors," translates as ", get_assertions_from_descriptors(vars_to_descriptors));

		vars_to_descriptors := {["U", {{"ZA"}}]};		-- a set of integers
		print("\ndescriptor for expression ",estg := "{[x •PLUS y,e(x,y)]: x in u, y in u - v}"," with variable descriptors ",vars_to_descriptors,
				" is: \n",expression_descriptor(estg,vars_to_descriptors),"\n\n");		-- calculate 

		vars_to_descriptors := {["U",{{"ZA"}}]};		-- a finite, non-null, set of sets of reals
		print("\ndescriptor for expression ",estg := "{[x,e(x)]: x in u}"," with variable descriptors ",vars_to_descriptors,
				" is: \n",expression_descriptor(estg,vars_to_descriptors),"\n\n");		-- calculate 
	
		vars_to_descriptors := {["X",{"one_1_map",{["ZA","Re"]}}]};
		print("descriptor info ",vars_to_descriptors," translates as ", get_assertions_from_descriptors(vars_to_descriptors));
	
		vars_to_descriptors := {["X",{["ZA","Re"]}],["Y",{"ZA"}]};
		print("descriptor info ",vars_to_descriptors," translates as ", get_assertions_from_descriptors(vars_to_descriptors));
	
		vars_to_descriptors := {["M",{"ZA"}],["N",{"ZA"}]};
		print("descriptor for expression ",estg := "m •PLUS n"," with variable descriptors ",
					vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression
	
		vars_to_descriptors := {["S",{"FIN",{"ZA"}}],["T",{"FIN",{"ZA"}}]};
		print("descriptor for expression ",estg := "{m •PLUS n: m in s, n in t}"," with variable descriptors ",
					vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression
	
		vars_to_descriptors := {["S",{"FIN",{"Re"}}]};
		print("descriptor for expression ",estg := "{R_rev(x): x in s}"," with variable descriptors ",
					vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression
	
	
		vars_to_descriptors := {["S",{"FIN",{"Re"}}]};
		print("descriptor for expression ",estg := "{abs(x): x in s}"," with variable descriptors ",
					vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression
		
		vars_to_descriptors := {["F",{"NONNULL",{["ZA",["Re","Re"]]}}]};
		print("descriptor for expression ",estg := "arb(range(f))"," with variable descriptors ",
							vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression
		
		vars_to_descriptors := {["F",{"NONNULL",{["ZA","Re"]}}]};
		print("descriptor for expression ",estg := "arb(domain(f))"," with variable descriptors ",
							vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression
		
		vars_to_descriptors := {["F",{"NONNULL",{["ZA",["Re","Re"]]}}]};
		print("descriptor for expression ",estg := "car(arb(range(f)))"," with variable descriptors ",
							vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression
		
		vars_to_descriptors := {["F",{"NONNULL",{["ZA",["Re","Re"]]}}]};
		print("descriptor for expression ",estg := "cdr(arb(range(f)))"," with variable descriptors ",
							vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression

		vars_to_descriptors := {["S",{Fin,{"Re"}}],["T",{Fin,{"Re"}}],["R",{}],["U",{Fin,{{"Re"}}}]};
						-- variables should have internal capitalized form
		print("descriptor for expression ",estg," with variable descriptors ",vars_to_descriptors," is: \n",
				expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression
		print("descriptor for expression ",estg := "Un({pow(s + t) - #r,u}) * v"," with variable descriptors ",
				vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression
		print("descriptor for expression ",estg := "arb(pow(s + t))"," with variable descriptors ",
						vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate descriptors of expression
				-- these expressions have involved pow, Un,+,*,-,#. Need to do  range, domain,pair,car,cdr.
	
				
				-- test a setformer expression: finite non-null set of reals
		vars_to_descriptors := {["S",{"FIN","NONNULL",{{"Re"}}}]};		-- a finite, non-null, set of sets of reals
		print("descriptor for expression ",estg := "{x * t: x in s}"," with variable descriptors ",vars_to_descriptors,
				" is: \n",expression_descriptor(estg,vars_to_descriptors));		-- calculate 
	
		vars_to_descriptors := {["S",{"FIN","NONNULL",{"Re"}}]};		-- a finite, non-null, set of reals
		print("descriptor for expression ",estg := "{x * t: x •incin s}"," with variable descriptors ",
				vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- 
	
		vars_to_descriptors := {["S",{"FIN","NONNULL",{{"Re"}}}],["T",{"NONNULL",{{"Re"}}}]};
	
								-- two non-null sets of sets of reals, one finite
		print("descriptor for expression ",estg := "arb({x * y: x in s,y in t})"," with variable descriptors ",
				vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- 
	
								-- definition of the sum of two integers
		vars_to_descriptors := {["S",{"FIN"}],["T",{"FIN"}]};
		print("descriptor for expression ",estg := "#({[x,0]: x in s} + {[y,1]: y in t})"," with variable descriptors ",
				vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- 
								-- definition of the product of two integers
		vars_to_descriptors := {["S",{"FIN"}],["T",{"FIN"}]};
		print("descriptor for expression ",estg := "#({[x,y]: x in s, y in t})"," with variable descriptors ",
				vars_to_descriptors," is: \n",expression_descriptor(estg,vars_to_descriptors));		-- 
	
	end test_compound_expressions;
	
	procedure test_basic_descriptor_actions(); 

		print("powerset of a finite set of reals: ",descriptor_action_of_pow({"FIN",{"Re"}}));		-- 
		print("Union set of a finite set of reals: ",descriptor_action_of_Un({"FIN",{"Re"}}));		-- 
		print("Union set of a finite set of sets of reals: ",descriptor_action_of_Un({"FIN",{{"Re"}}}));		-- 
		print("Union of two sets of reals, one finite: ",descriptor_action_of_union({"FIN",{"Re"}},{{"Re"}}));		-- 
		print("Union of two sets of reals, both finite: ",descriptor_action_of_union({"FIN",{"Re"}},{"FIN",{"Re"}}));		-- 
		print("Intersection of a finite set of reals with another set: ",descriptor_action_of_intersection({"FIN",{"Re"}},{}));		-- 
		print("Difference of a set of reals and another set: ",descriptor_action_of_difference({"FIN",{"Re"}},{"Re"}));		-- 
		print("Range of a finite sequence of reals: ",descriptor_action_of_range({"FIN",{["ZA","Re"]}}));		-- 
		print("Domain of a finite sequence of reals: ",descriptor_action_of_domain({"FIN",{["ZA","Re"]}}));		-- 
		print("Pair of integer and real: ",descriptor_action_of_pair({"ZA"},{"Re"}));		-- 
		print("car of pair of integer and real: ",descriptor_action_of_car({["ZA", "Re"]}));		-- 
		print("cdr of pair of integer and real: ",descriptor_action_of_cdr({["ZA", "Re"]}));		-- 
		print("arb of a non-null real-valued function: ",descriptor_action_of_arb({"NONNULL",{["OM","Re"]}}));		-- 
		print("arb of a real-valued function: ",descriptor_action_of_arb({{["OM","Re"]}}));		-- 
		print("count of a non-null finite set of reals: ",descriptor_action_of_count({"FIN","NONNULL",{"Re"}}));		-- 
		print("union of a finite set of integers: ",descriptor_action_of_Un({"FIN",{"ZA"}}));
		print("cartesian product of two finite sets of integers: ",descriptor_action_of_cartprod({"FIN",{"ZA"}},{"FIN",{"ZA"}}));
		print("the inverse of a map: ",descriptor_action_of_func_inv({"FIN",{["ZA","Re"]}}));
		print("functional product of two maps: ",descriptor_action_of_funcprod({"FIN",{["ZA","Re"]}},{"FIN",{["Re","CARD"]}}));

--		print("functional application of a map to a set: ",descriptor_action_of_func_app({"FIN",{"ZA"}}));		-- questionable?????
	
	end test_basic_descriptor_actions;
	
end test;

--      ***********************************************************************
--      ************* Test Program collection for Ref top level ***************
--      ***********************************************************************

---> program
program test;			-- some verifier tests
	use verifier_top_level;
	use logic_syntax_analysis_pak,parser,prynter; 		-- use the top  level of the logic verifier collection
print("test");

--	do_tests3();			-- do tests for this package
	
procedure do_tests3();			-- do tests for this package
	init_logic_syntax_analysis(); 			-- ********** REQUIRED  **********

	otter_item := "all x ( -(nneg(x)) -> abs(x)=rvz(x) ).";
	printy(["otter_to_ref: ",otter_to_ref(otter_item,"some_file.txt")]); 		-- converts an otter item to SETL syntax
	printy(["stopped due to: stop in test"]); stop;
	
	printy(["ordered_free_vars: ",stg := "(FORALL s,t | Finite(s) •imp (h(s,t) = if s = 0 then f0 else g2(h(s - {arb(s)},t),s) end if));",ordered_free_vars(parse_expr(stg)(2))]);
	printy(["stopped due to: stop in test"]); stop; 
	test_check_a_skolem_inf(); printy(["stopped due to: stop in test"]); stop;		-- test of check_a_skolem_inf function
	test_check_an_apply_inf(); printy(["stopped due to: stop in test"]);stop;		-- test of check_an_apply_inf function 
	
	conj := "(G = {[x1,F(x1)]: x1 in ss}) and " + 
	"(not ({CAR(x2): x2 in G} = {CAR(x2): x2 in {[x1,F(x1)]: x1 in S}}));";
--->test_conj

	check_an_equals_inf(conj,"conclude",OM,OM,OM);
	printy(["stopped due to: sto in test"]); stop;
	test_conj(conj);
	
--	parse_scenario("Diana:Pub:Logic_repository:Defs_w_proofs_modif.pro");								-- parse the Defs_w_proofs file, producing all the files used subsequently
--	parse_Defs_w_proofs();			-- parse a specified Defs_w_proofs file		
--	check_proofs(1,4);
--	check_proofs(121,160);		-- check ELEM and discharge inferences in given range
	inspect_proofs([1,3,666]);
--get_hints(1,40);		-- read the hints which occur in a given range of proofs
--view_theorem_citations(1,40);			-- count the number of theorem citations in a given range, and print them
--printy([tree_starts(["ast_list", ["ast_of", "IS_MAP", ["ast_list", ["ast_genset", ["ast_enum_tup"]]]]],parze_expr("Is_map({[x,y]: x in s | P(x)});"))]);	
--init_logic_syntax_analysis();  printy([parze_expr("Is_svm({[x,e(x)]: x in s | P(x)});")(2)]);
--init_logic_syntax_analysis();  printy([blob_tree(parze_expr("Is_map({[x,e(x)]: x in s | P(x)}]);")(2)));
--init_logic_syntax_analysis(); printy([blob_tree(parze_expr("Is_map({[x,e(x),y]: x in s | P(x)}) •eq Is_map({[x,e(x)]: x in s | P(x)}]);")(2)));
--init_logic_syntax_analysis();  printy([blob_tree(parze_expr("Finite(#s]);")(2)));
--init_logic_syntax_analysis();  printy([blob_tree(parze_expr("{[x,e(x)]: x in s | P(x)} = {[x,e(x),y]: x in s | P(x)}];")(2)));
--printy([blob_tree(parze_expr("not ({[x,e(x)]: x in s | P(x)} = {[x,e(x),y]: x in s | P(x)}]);")(2)));
--printy([blob_tree(parze_expr("[{[x,e(x)]: x in s | P(x)},{[x,e(x),y]: x in s | P(x)}]];")(2)));

--targ_tree := parze_expr("Is_map({[a(x,y,yy),b(x,y,yy)]: x in s, y in t, yy in u | P(x,y,yy)});");
--replacement_map := {["S", "s"], ["T", "t"], ["U", "u"]}; 
--printy([unparse(substitute(targ_tree,replacement_map))]);
	
	printy(["test_conj: ",test_conj("not(car(b3) = cdr(b3));")]); 
	printy(["stopped due to: sstop in test"]); stop;
	
	test_pairs := [["(FORALL x in s | x > 0)",1], 
--					["(FORALL x in s, y in t | x > y)",1],
--					["(FORALL x in s, y  | x > y)",1],
--					["(FORALL x in s, y in OM  | x > y)",1],
--					["(FORALL x, y in t | x > y)",1],
--					["(FORALL x in OM, y in t | x > y)",1],
--
--					["(FORALL x in s, y in t | x > y)",2],
--					["(FORALL x in s, y  | x > y)",2],
--					["(FORALL x in s, y in OM  | x > y)",2],
--					["(FORALL x, y in t | x > y)",2],
--					["(FORALL x in OM, y in t | x > y)",2],
--
--					["(FORALL x in s, y in t | x > y)",3],
--					["(FORALL x in s, y  | x > y)",3],
--					["(FORALL x in s, y in OM  | x > y)",3],
--					["(FORALL x, y in t | x > y)",3],
--					["(FORALL x in OM, y in t | x > y)",3],
--
--					["(FORALL x in s | (FORALL y in t, u in w | x > y))",2],
--					["(FORALL x in s | (FORALL y, u  | x > y))",2],
--					["(FORALL x in s | (FORALL y in OM  | x > y))",3],
--					["(FORALL x | (FORALL y in t | x > y))",2],
--					["(FORALL x in OM | (FORALL y in t | x > y))",2],
--
--					["(EXISTS x in s, y in t | x > y)",1],
--					["(EXISTS x in s, y  | x > y)",1],
--					["(EXISTS x in s, y in OM  | x > y)",1],
--					["(EXISTS x, y in t | x > y)",1],
--					["(EXISTS x in OM, y in t | x > y)",1],
--
--					["(EXISTS x in s, y in t | x > y)",2],
--					["(EXISTS x in s, y  | x > y)",2],
--					["(EXISTS x in s, y in OM  | x > y)",2],
--					["(EXISTS x, y in t | x > y)",2],
--					["(EXISTS x in OM, y in t | x > y)",2],
--
--					["(EXISTS x in s, y in t | x > y)",3],
--					["(EXISTS x in s, y  | x > y)",3],
--					["(EXISTS x in s, y in OM  | x > y)",3],
--					["(EXISTS x, y in t | x > y)",3],
--					["(EXISTS x in OM, y in t | x > y)",3],
--
--					["(EXISTS x in s | (FORALL y in t, u in w | x > y))",2],
--					["(EXISTS x in s | (FORALL y, u  | x > y))",2],
--					["(EXISTS x in s | (FORALL y in OM  | x > y))",3],
--					["(EXISTS x | (FORALL y in t | x > y))",2],
--					["(EXISTS x in OM | (FORALL y in t | x > y))",2],
--
--					["(EXISTS x in s | (EXISTS y in t, u in w | x > y))",2],
--					["(EXISTS x in s | (EXISTS y, u  | x > y))",2],
--					["(EXISTS x in s | (EXISTS y in OM  | x > y))",3],
--					["(EXISTS x | (EXISTS y in t | x > y))",2],
--					["(EXISTS x in OM | (EXISTS y in t | x > y))",2],

--					["y in {e(x): x in s | x > 0}",1],
--					["cos(y) in {e(x): x in s, u in t | x > u}",1],
--					["cos(y) in {e(x): x in s, u in t | x > u}",2],
--					["cos(y) in {e(x): x in s, u in t | x > u}",3],
--					["cos(y) in {e(x): x in s}",1],
--					["cos(y) in {x in s | x > 0}",1],
--
--					["y notin {e(x): x in s | x > 0}",1],
--					["cos(y) notin {e(x): x in s, u in t | x > u}",1],
--					["cos(y) notin {e(x): x in s, u in t | x > u}",2],
--					["cos(y) notin {e(x): x in s, u in t | x > u}",3],
--					["cos(y) notin {e(x): x in s}",1],
--					["cos(y) notin {x in s | x > 0}",1],

--					["{e(x): x in s | x > 0} /= {e(x):  x in s | x > 1}",1],
--					["{e(x): x in s | x > 0} /= {e(x):  x in s}",1],
--					["{e(x): x in s} /= {e(x):  x in s | x > 1}",1],
--
--					["{e(x): x in s, y in t | x > y} /= {e(x):  x in s, y in t | x > y + 1}",1],
--					["{e(x): x in s, y in t | x > y} /= {e(x):  x in s, y in t}",1],
--					["{e(x): x in s, y in t} /= {e(x):  x in s, y in t | x > y}",1],
--
--					["{e(x): x in s, y in t | x > y} /= {e(x):  x in s, y in t | x > y + 1}",2],
--					["{e(x): x in s, y in t | x > y} /= {e(x):  x in s, y in t}",2],
--					["{e(x): x in s, y in t} /= {e(x):  x in s, y in t | x > y}",2],
--
--					["{x in s | x > 0} /= {x in s | x > 1}",1],
--
--					["{e(x): x in s | x > 0} /= {e(x):  x in t | x > 1}",1],
--
--					["a /= {e(x):  x in s | x > 1}",1],
--					["{e(x):  x in s | x > 1} /= a + b",1],
--					["{e(x): x in s | x > 0} /= {}",1],
--					["{e(x): x in s | x > 0} /= 0",2],
--					["{} /= {e(x): x in s | x > 0}",1],
--					["{} /= {e(x): x in s | x > 0}",2],
--
--					["{e(x): x in s, y in t | x > y} /= {}",1],
--					["{e(x): x in s, y in t | x > y} /= 0",2],
--					["{} /= {e(x): x in s, y in t | x > y}",1],
--					["{} /= {e(x): x in s, y in t | x > y}",2],

--					["(FORALL x in s, y in t | x > y) & (FORALL u in s, v in t | u + v < u - v)",1],
--					["(FORALL x in s, y in t | x > y) & (FORALL u in s, v in t | u + v < u - v)",2],
--					["(FORALL x in s, y in t | x > y) & (FORALL u in s, v in t | u + v < u - v)",3],
--					["(FORALL x in s, y in t | x > y) & (FORALL u in s, v in t | u + v < u - v)",4],
--					["(FORALL x in s, y in t | x > y) & (FORALL u in s, v in t | u + v < u - v)",5],
--
--					["(FORALL x in s, y in t | x > y) & (EXISTS x in s, y in t | x + y < x - y)",1],
--					["(FORALL x in s, y in t | x > y) & (EXISTS x in s, y in t | x + y < x - y)",2],
--					["(FORALL x in s, y in t | x > y) & (EXISTS x in s, y in t | x + y < x - y)",3],
--					["(FORALL x in s, y in t | x > y) & (EXISTS x in s, y in t | x + y < x - y)",4],
--					["(FORALL x in s, y in t | x > y) & (EXISTS x in s, y in t | x + y < x - y)",5],

--					["not(FORALL x in OM | (FORALL y in t | x > y))",2],
--					["(FORALL x in OM | (FORALL y in t | x > y))",2],
--					["not(EXISTS x in s, y in t | x > y)",1],
--					["not(cos(y) in {e(x): x in s, u in t | x > u})",1],
--					["not(cos(y) notin {e(x): x in s, u in t | x > u})",2],
--					["not({e(x): x in s, y in t | x > y} = {})",1],

--					["{e(x): x in s | x > 0} = {}",1],
--					["{e(x): x in s | x > 0} = 0",2],
--					["{e(x): x in s | x > 0} •incin 0",2],
--					["0 incs {e(x): x in s | x > 0}",2],
--					["not ({e(x): x in s | x > 0} incs {e(x): x in s | x > 1})",2],
--					["not ({e(x): x in s | x > 0} •incin {e(x): x in s | x > 1})",2],

--					["not(a in {p in f | car(p) in domain(f)})",1],
--					["not (q in {k in Z | (k •TIMES n) •incin m})",1],
--					["o notin {x •incin o | Ord(x)  and  P(x)}",1],
--					["not(a •incin t)",1],
--					["not(a incs t)",1],
--					["not((FORALL x in t | x •incin t) & (FORALL x in t | (FORALL y in t | (x in y or y in x or x = y))))",2],
--					["(not(FORALL x in t | x •incin t)) or (not(FORALL x in t | (FORALL y in t | (x in y or y in x or x = y))))",2],
--					["(not(FORALL x in t | x •incin t))",2],
--					["(EXISTS x in t | (not(x •incin t)))",2],
--					
--					["range(f) /= #t",1],
--					["{cdr(x): x in f} /= 0",1],
--					["x in {[car(x),cdr(x)]: x in f}",1],

--					["((FORALL x in t | x •incin t)) or ((FORALL x in t | (FORALL y in t | (x in y or y in x or x = y))))",2],

--					["(FORALL x in s, y in t | x > y)",1],
--					["(EXISTS x in s, y in t | x > y)",1],
--
--					["(FORALL x in s, y in t | x > y) or (FORALL u in s, v in t | u + v < u - v)",1],
--					["(FORALL x in s, y in t | x > y) or (FORALL u in s, v in t | u + v < u - v)",2],
--					["(FORALL x in s, y in t | x > y) or (FORALL u in s, v in t | u + v < u - v)",3],
--					["(FORALL x in s, y in t | x > y) or (FORALL u in s, v in t | u + v < u - v)",4],
--					["(FORALL x in s, y in t | x > y) or (FORALL u in s, v in t | u + v < u - v)",5],
--
--					["(FORALL x in s, y in t | x > y) or (EXISTS x in s, y in t | x + y < x - y)",1],
--					["(FORALL x in s, y in t | x > y) or (EXISTS x in s, y in t | x + y < x - y)",2],
--					["(FORALL x in s, y in t | x > y) or (EXISTS x in s, y in t | x + y < x - y)",3],
--					["(FORALL x in s, y in t | x > y) or (EXISTS x in s, y in t | x + y < x - y)",4],
--					["(FORALL x in s, y in t | x > y) or (EXISTS x in s, y in t | x + y < x - y)",5],
					["x /= 0",1],
					["true /= false",0]];
	
	for [form,nquants] in test_pairs loop
		printy([]);
		sq := strip_quants(parze_expr(form + ";")(2),nquants); --printy(["sq: ",sq]);
--printy(["sq: ",sq]);
		if sq /= OM then
			printy([10 * " ",unparse(sq(1)),"  ",sq(2)," dequant ",nquants]);
		else  
			printy([sq]); 
		end if;
	end loop;

	miscellaneous_tests();	-- repository for miscellaneous top-level logic verifier tests under development
	
end do_tests3;

	procedure test_check_a_skolem_inf;		-- test of check_a_skolem_inf function
	
		trips := [
					["T42","v1_thryvar:enum_Ord","(FORALL s | Ord(enum_Ord(s)) & (s = {enum(y,s): y in enum_Ord(s)}) & " + 
							"(FORALL y in enum_Ord(s), z in enum_Ord(s) | ((y /= z) •imp (enum(y,s) /= enum(z,s)))));"],
					["T42","v1_thryvar:enum_Ord","(FORALL s | Ord(enum_Ord(s)) & (s = {enum(y,s): y in enum_Ord(s)}) & " + 
							"(FORALL y in enum_Ord(s), z in enum_Ord(s) | ((y /= z) •imp (enum(y,s) = enum(z,s)))));"],
					[]];
	
		for [thm_name,apply_outputs,stat] in trips | apply_outputs /= OM loop
			printy(["\ntesting: ",thm_name," ",apply_outputs," ",stat]);
			if check_a_skolem_inf(thm_name,stat,[],apply_outputs) = OM then
				printy(["********** Skolem inference failed"]);
			else
				printy(["Skolem inference successful......"]);
			end if;
		end loop;
	
	end test_check_a_skolem_inf;

	procedure test_check_an_apply_inf;		-- test of check_an_apply_inf function

def_in_theory := {["product_order", {"ORD1P2_THRYVAR"}], 		-- symbols defined in various theories (for testing only)
	["setformer", {"X_THRYVAR"}], 
	["finite_tailrecursive_fcn2", {"H_THRYVAR"}], 
	["setformer2", {"XY_THRYVAR", "X_THRYVAR", "Y_THRYVAR"}], 
	["one_1_test_2", {"Y2_THRYVAR", "XY_THRYVAR","X2_THRYVAR", "X_THRYVAR", "Y_THRYVAR"}], 
	["Svm_test_2", {"YP_THRYVAR", "XY_THRYVAR", "XP_THRYVAR", "X_THRYVAR", "Y_THRYVAR"}], 
	["well_founded_set", {"ORD_THRYVAL", "MINREL_THRYVAR", "ORDEN_THRYVAR"}], 
	["finite_recursive_fcn", {"H_THRYVAR"}], 
	["finite_induction", {"M_THRYVAR"}], 
	["transfinite_member_induction", {"MT_THRYVAR"}], 
	["wellfounded_recursive_fcn", {"HH", "INDEX", "H_THRYVAR"}], 
	["ordinal_induction", {"T_THRYVAR"}], 
	["transfinite_induction", {"MT_THRYVAR"}], 
	["comprehension", {"TT_THRYVAR"}], 
	["transfinite_definition_0_params", {"F_THRYVAR"}], 
	["transfinite_definition_1_params", {"F_THRYVAR"}], 
	["Svm_test_3", {"YP_THRYVAR", "ZP_THRYVAR", "XY_THRYVAR", "XP_THRYVAR", "Z_THRYVAR", "X_THRYVAR", "Y_THRYVAR"}], 
	["ordval_fcn", {"RNG_THRYVAL"}], 
	["Svm_test", {"XY_THRYVAR", "X_THRYVAR", "Y_THRYVAR"}], 
	["one_1_test", {"XY_THRYVAR", "X_THRYVAR", "Y_THRYVAR"}],  
	["fcn_symbol", {"XY_THRYVAR", "X_THRYVAR", "Y_THRYVAR"}], 
	["equivalence_classes", {"EQC_THRYVAR", "F_THRYVAR"}], 
	["Set_theory", {"ast_enum_tup", "RA_SEQ_0", "ONE_1_MAP", "R_ABS_RECIP", "C_0", "RA_0", 
	"RF_0", "RECIP", "IS_MAP", "C_RECIP", "R_RECIP", "DD", "CDD", "CRDD", "DOT_RA_GT", 
	"DOT_RF_GT", "IS_OPEN_C_SET", "RED", "NEXT", "DOT_R_GT", "ORD", "CARD", "CONCAT", 
	"POS_PART", "DOT_PROD", "4", "INT", "SQRT", "BFINT", "IDENT", "ULEINT", "DOT_MOD", 
	"ast_nelt", "LINE_INT", "MEMBS_X", "INTERVAL", "ULT_MEMB_1", "RA_EQSEQ", "RA_SEQ_1", 
	"SHIFTED_SEQ", "C_1", "RA_1", "RA_SEQ", "1", "E", "FINITE", "DOT_R_GE", "CE", "RANGE", 
	"PI", "RA_CAUCHY", "SI", "ENUM", "SVM", "NORM", "CNORM", "CM", "DOT_INV_IM", "GLB", 
	"DOT_RAS_OVER", "DOT_C_OVER", "DOT_R_OVER", "ULTRAFILTER", "CDR", "LUB", "CAR", 
	"DER", "CDER", "CRDER", "FILTER", "DOT_RA_OVER", "2", "FR", "MEMBS_2", "DOT_OVER", 
	"IS_CD_CURV", "IS_ANALYTIC_CF", "FSIG_INF", "RF", "RBF", "C_REV", "S_REV", 
	"IS_CONTINUOUS_RF", "RA_REV", "RF_REV", "IS_CONTINUOUS_RENF", "IS_CONTINUOUS_CENF", 
	"IS_CONTINUOUS_CORF", "CF", "INV", "BL_F", "IS_CONTINUOUS_CF", "SIG_INF", "IS_CONTINUOUS_CRENF", 
	"ZA", "C_EXP_FCN", "UN", "DOMAIN", "DOT_ON", "DOT_RAS_TIMES", "DOT_RAS_PLUS", "DOT_RAS_MINUS", 
	"DOT_C_PLUS", "DOT_RA_MINUS", "DOT_F_PLUS", "DOT_RA_TIMES", "DOT_S_PLUS", "FIN_SEQS", 
	"DOT_C_TIMES", "DOT_C_MINUS", "DOT_F_TIMES", "DOT_F_MINUS", "DOT_CF_MINUS", "DOT_RA_PLUS", 
	"DOT_S_TIMES", "DOT_S_MINUS", "DOT_MINUS", "ULT_MEMBS", "DOT_TIMES", "3", "C_ABS", "S_ABS", 
	"SAME_FRAC", "DOT_PLUS", "POW", "IS_NONNEG", "R_IS_NONNEG", "RA_IS_NONNEG", "FR_IS_NONNEG", "AT_", "TILDE_"}]};
		quads := [							-- note that the "ordinal_induction" example is not actually at top level
--					["T17","ordinal_induction",["P(x)->not(Ult_membs(x) •incin x)", "o->oo"],"t_thryvar:t"],
--					["T17","ordinal_induction",["P(x)-not(Ult_membs(x) •incin x)", "o->oo"],"t_thryvar:t"],
--					["T17","ordinal_induction",["P(x->not(Ult_membs(x) •incin x)", "o->oo"],"t_thryvar:t"],
--					["T17","ordinal_induction",["P(x)->not(Ult_membs(x) •incin x))", "o->oo"],"t_thryvar:t"],
--					["T17","ordinal_induction",["P2(x)->not(Ult_membs(x) •incin x)", "o->oo"],"t_thryvar:t"],
--					["T17","ordinal_induction",["P(f(x))->not(Ult_membs(x) •incin x)", "o->oo"],"t_thryvar:t"],
--					["T17","ordinal_induction",["P(x,y)->not(Ult_membs(x) •incin x)", "o->oo"],"t_thryvar:t"],
--					["T17","ordinal_induction",["P(x,x)->not(Ult_membs(x) •incin x)", "o->oo"],"t_thryvar:t"],
--					["T17","ordinal_induction",["P(x)->not(Ult_membs(x) •incin x)", "o(x)->oo"],"t_thryvar:t"],
--					["T17","ordinal_induction",["P->not(Ult_membs(x) •incin x)", "o->oo"],"t_thryvar:t"],
--					["T17","ordinal_induction",["P(x)->not(Ult_membs(x) •incin x)", "P(x)->(Ult_membs(x) incs x)"],"t_thryvar:t"],
--					["T17","ordinal_induction",["P(x)->not(Ult_membs(x) •incin x)"],"t_thryvar:t"],
--					["T17","ordinal_induction",["o->oo"],"t_thryvar:t"],
--					["T17","ordinal_induction",["P(x)->not(Ult_membs(x) •incin x)", "oi->oo"],"t_thryvar:t"],
					["T343","equivalence_classes",["P(x,y)->Same_frac(x,y)","s->Fr"],"Eqc_thryvar:Ra,f_thryvar:Fr_to_Ra"],
					[]];
printy(["Starting tests: "]);	
		for [next_thm_name,theory_name,apply_params,apply_outputs] in quads | apply_outputs /= OM loop
			printy([]); 
			res := check_an_apply_inf(next_thm_name,theory_name,apply_params,apply_outputs);
			if res = OM then printy(["APPLY inference failed"]); else  printy(["APPLY inference successful"]); end if;
		end loop;
	
	end test_check_an_apply_inf;

end test;

				-- ******* invocation stub for standalone use of verifier *******  
program test;
	use verifier_top_level;
	verifier_invoker("1..100");	-- give the range string that would have been used in web invocation		
end test;

				-- ******* invocation stubs for the library of users *******  also need folder and entry in etnanova_main.php; see comment there 

program a_invoke_verifier;			-- small program to invoke logic verifier a_invoke_verifier.stl  (alberto)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("a_folder/");			-- master invocation routine
end a_invoke_verifier;

program b_invoke_verifier;			-- small program to invoke logic verifier b_invoke_verifier.stl (Alf - Alfredo)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("b_folder/");			-- master invocation routine
end b_invoke_verifier;

program C_invoke_verifier;			-- small program to invoke logic verifier c_invoke_verifier.stl (Eu2 - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("c_folder/");			-- master invocation routine
end C_invoke_verifier;

program D_invoke_verifier;			-- small program to invoke logic verifier d_invoke_verifier.stl (Eu3 - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("d_folder/");			-- master invocation routine
end D_invoke_verifier;

program e_invoke_verifier;			-- small program to invoke logic verifier e_invoke_verifier.stl (eugenio)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("e_folder/");			-- master invocation routine
end e_invoke_verifier;

program F_invoke_verifier;			-- small program to invoke logic verifier f_invoke_verifier.stl (Eu4 - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("f_folder/");			-- master invocation routine
end F_invoke_verifier;

program g_invoke_verifier;			-- small program to invoke logic verifier g_invoke_verifier.stl (Guest)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("g_folder/");			-- master invocation routine
end g_invoke_verifier;

program H_invoke_verifier;			-- small program to invoke logic verifier h_invoke_verifier.stl (Eu5 - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("h_folder/");			-- master invocation routine
end H_invoke_verifier;

program i_invoke_verifier;			-- small program to invoke logic verifier i_invoke_verifier.stl (yo keller - Ait - Alexandru Ioan Tomescu)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("i_folder/");			-- master invocation routine
end i_invoke_verifier;

program j_invoke_verifier;			-- small program to invoke logic verifier j_invoke_verifier.stl (jack)
	use verifier_top_level;			-- use the logic verifier
--print("verifier_top_level: "); stop;
	verifier_invoker("j_folder/");			-- master invocation routine	
end j_invoke_verifier;

program k_invoke_verifier;			-- small program to invoke logic verifier k_invoke_verifier.stl (yo keller)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("k_folder/");			-- master invocation routine
end k_invoke_verifier;

program L_invoke_verifier;			-- small program to invoke logic verifier l_invoke_verifier.stl (Eu6 - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("l_folder/");			-- master invocation routine
end L_invoke_verifier;

program m_invoke_verifier;			-- small program to invoke logic verifier m_invoke_verifier.stl  (mimo)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("m_folder/");			-- master invocation routine
end m_invoke_verifier;

program N_invoke_verifier;			-- small program to invoke logic verifier n_invoke_verifier.stl (Eu7 - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("n_folder/");			-- master invocation routine
end N_invoke_verifier;

program O_invoke_verifier;			-- small program to invoke logic verifier o_invoke_verifier.stl (Eu8 - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("o_folder/");			-- master invocation routine
end O_invoke_verifier;

program P_invoke_verifier;			-- small program to invoke logic verifier p_invoke_verifier.stl (Eu9 - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("p_folder/");			-- master invocation routine
end P_invoke_verifier;

program Q_invoke_verifier;			-- small program to invoke logic verifier q_invoke_verifier.stl (EuA - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("q_folder/");			-- master invocation routine
end Q_invoke_verifier;

program r_invoke_verifier;			-- small program to invoke logic verifier r_invoke_verifier.stl (Martin)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("r_folder/");			-- master invocation routine
end r_invoke_verifier;

program s_invoke_verifier;			-- small program to invoke logic verifier s_invoke_verifier.stl  (toto)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("s_folder/");			-- master invocation routine
end s_invoke_verifier;

program T_invoke_verifier;			-- small program to invoke logic verifier t_invoke_verifier.stl (EuB - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("t_folder/");			-- master invocation routine
end T_invoke_verifier;

program U_invoke_verifier;			-- small program to invoke logic verifier u_invoke_verifier.stl (EuC - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("u_folder/");			-- master invocation routine
end U_invoke_verifier;

program V_invoke_verifier;			-- small program to invoke logic verifier v_invoke_verifier.stl (EuD - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("v_folder/");			-- master invocation routine
end V_invoke_verifier;

program W_invoke_verifier;			-- small program to invoke logic verifier w_invoke_verifier.stl (EuE - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("w_folder/");			-- master invocation routine
end W_invoke_verifier;

program X_invoke_verifier;			-- small program to invoke logic verifier x_invoke_verifier.stl (EuF - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("x_folder/");			-- master invocation routine
end X_invoke_verifier;

program Y_invoke_verifier;			-- small program to invoke logic verifier y_invoke_verifier.stl (EuG - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("y_folder/");			-- master invocation routine
end Y_invoke_verifier;

program Z_invoke_verifier;			-- small program to invoke logic verifier z_invoke_verifier.stl (EuH - eugenio spare)
	use verifier_top_level;			-- use the logic verifier
	verifier_invoker("z_folder/");			-- master invocation routine
end Z_invoke_verifier;

« January 2025 »
Su Mo Tu We Th Fr Sa
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
 

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: