SETL Newsletter ' # 134) J. Schwartz
July 1, 1974

" Inter-Procedural Optimisation

The optimisation algorithms described in newsletter 118,
13Q, 131 and A. Tenenbaum's thesis are all intraprocedural,
in that they work with a schematised program consisting of
one single 'main routine' which is assumed to be free of
subprocedure calls. These algorithms also ignore the complications
to flow analysis which arise when subprocedures become the
values of variables or of parameters, and when transfers to
variable labels occur within a program. A useful optimiser
system will of course have to handle both these situations.
In the present newsletter we shall outline algorithms,
adapted from those developed for a PL/1 optimiser by F. Allen
and her associates, which begin to be adequate to this
purpose. It will be seen that in the form in which they
will be presented these algorithms use some of the ideas
developed in newsletter 131. We shall also employ the
terminology introduced in that newsletter.

1. Flow Estimation, the Call Graph.

Let P be a program in which procedure and/or label
variables are used. The first problem to be overcome is
that when we encounter P we do not know what structure its
flow, i.e. its program graph, has. This problem is particularly
acute in SETL, since variables are untyped, so that any
variable can take on a procedure value, and since the map
applications £(x) and f(xl,...,xn) can also be function calls.

_ Before applying other global optimisations we must therefore

aim to estimate P's flow, i.e. to determine which variables
v in P - can have procedure (resp. label) values, and the
procedures (resp. labels)'which can become values of each such v.

SETL-134

This information must be developed by an algorithm which
does not require precise information concerning P's flow,
since it is this flow which we are trying to find. Note
that the algorithms in which ‘subsequently use the flow will
remain correct even if the flow is overestimated, but not

if is is underestimated. Here we speak of an overestimation
of flow if a transfer or call that is actually impossible is
judged possible, and of an underestimation if a possible
transfer or call is judged impossible., We may speak in a
similar sense of overestimation (and underestimation) of
data flow: data flow is overestimated if we adjudge the

set ud(i) of all ovariables o which can set the value of a
~given ivariable i to be larger than it is.

To estimate ud(i), we begin with a coarse overestimate
udo(i) and refine it. The initial quess udo(i) is obtained
as follows. P is schematised in a manner 'resolving' the
names used within P, i.e., assigning explicitly different
symbols to names which have the same spelling but which
appear in different namescopes. Then we put the ovariable
o in udo(i) if i and o involve the same symbol x (i as a use,
0 as a definition), This rule applies if neither o nor i is a
subprocedure parameter or argument.- Subprocedure arguments
are treated both as ivariables and ovariables, rather as if
a function call of the syntactic form y = f(al,...,an)

consisted of two successive statements

¢8) " enter f(al"“'an)

y = f(al,...,an);

with Bqreeesdy in the first line being ivariables and YRR
in the second line being ovariables. (The reader is reminded
that a SETL subprocedure can modify the parameters with which
it is calied, and that a éubroutine can be regarded as a

function which returns a nil value to a dummy variable

that is never used.)

n

3]

SETL~134

A procedure parameter appearing in a header line

(2) define sub(pl,...,pn)
or ' - .
(2") definef f(pl,....pn)

is considered to be an ovariable, which receives a value
from the corresponding - argument when the subprocedure is
entered. In setting up udo(i), we use the following rules
to handle subprocedure arguments and parameters. For the
ivariable ay appearing in the first line of (1), udolaj)
includes each ovariable p. appearing in a header (2) or (2')
for which n = m., Variables appearing in the context

(3) return v
within a function headed by (2') are ivariables, and ud (V)
includes each ovariable y appearing in the second line of

the 'expanded form'(l) of a call. Moreover, a return
statement of the form (3) or of the simpler form

(3*) return

used within a subroutine is considered to have every parameter

: pj of the subroutine in which it appears as an ivariable;

and the ovariable aj appearing in the second line of (1)
belongs to o(pj) whenever the call (1) and the subrouiine
header (2) have a matching number of parameters.

The function f (or the subroutine sub) is considered to

"be an ovariable of the header line (2') or {or (2)) which

defines f and thus acts very much like an assignment to f.

2%
-

SETL- 134

In this same sense, we consider a labéled statement
(4) lab: ...

to have the symbol lab as an ovariable, since (4) defines
lab and thus acts very much 1like a assignment to lab.

The rules stated above define udo(i) for each ivariable
of P. To refine this overestimate of the data flow, we
proceed as follows. Using udo in place of the use-definition
chaining function ud which appears in newsletter 131, -
equations (1,2) of section 2 and equations (1-4) of section
4, we calculate the functions erthis, ermemb, crcomp, crsomcomp
appearing in these equations. The reader is reminded that
erthis(i) (resp. crthis(o)) is the set of all ovariables
which create an object which at some moment in the execution
of P becomes the current value of i (resp. o). Moreover,
ermemb (i) (resp. crsomcomp(i) is the set of all ivariables J
whose values become incorporated as members into a set
(resp. as components into a tuple) which at some moment in
the execution of P becomes the current value of 7; crmemb(o).
and ecrsomcomp(o) can be defined in a very similar way for
ovariables ¢. Note that the function that we primirily want
is erthis(i), and that crmemb(i), etc. are merely needed as
auxiliary quantities for calculating erthis.

Let c deéignate the ovariable of a subprocedure header«
line (2) or (2'), in the sense explaned in the sentence
preceeding (4) above. The subprocedure declared by (2) or
(2%) can become the value of an ivariable i only if
.0 € crthis(i}. Similarly, of o' designates the label-representing
ovariable of the labeled statement (4), then an ivariable i
can have'the lab of (4) as one of its values only if o' t certhia{l).

-

TN
(\

SETL~134

Thus, by calculating crthis we obtain conditions, which
should be reasonably accurate, restricting the variables
which can assume procedure and label values;as well as the
particular procedure and label values which these variables
can assume, These conditions give us our first estimate

(actually, overestimate) of the flow of P.

Note 1n passing that since the number of procedures
and explicit labels appearing in a SETL program P will
generally be far smaller than the number of ivariables of P,
it may be preferable to calculate not erthis(i) but its
inverse function orthis-l(o). Equations somewhat like the
equations given in section 2 and 4 of newsletter 131 but
involving these inverse functions can be written and actually
will be outlined in later section of the present newsletter.

Once having arrived at a first estimate of the flow
of P, we may revise our preliminary overestimate udo(i) of
the data-flow of P, obtaining a more precise overestimate
udl(i}.‘ Using ud, in place of ud, and recalculating
erthis” ‘(i) by the method just explained, we can obtain a
8till more precise estimate udz(i) and so on inductively.
Since all the sets involved are finite, this process will
stabilise after a finite number of steps. Actuvally, since
each such iteration ma§ be relatively expensive, we may
decide to iterate only once or twice, and to use the flow
estimate corresponding to uéo(i) or udl(i) in applying
other global optimisation processes to P.

To calculate ud from the flow F_ estimated from ud_,
n+1 n n

is schematised into a collection of basic blocks. When a

block B ends with a transfer

{5} go to labvar

w

*

we could proceed as follows. In very much the ordinary way, P

SETL-~134 6

where lgbvar is a variable having the labels L;,...L as
possible values, then B has as sucessors the blocks

Bl""'Bn beginning with_Ll,....,Ln respectively. Points

at which functions of the form y = f(al,...,an) might be called
are expanded as follows. Let the procedures which can be

a value of f'be called routl,...,routk. Let-le, pj2""' E_in
bg the formal parameters of routj, and let pjo denote the

" value returned by routj. Let a label rj be generated to

mark the point of entry to routj. Then the function call

y = f(al,...an) is expanded into the following code schema.

(6) go to labvar;

/* where the possible values of Ilagbvar
are the generated labels 21,22,...4n
appearing immediately below */

1: <Plll plzlo-.lplns = <31,-..;an>;

* %*
/ pjl"“'pjn are the parameters of routj /.
"go to rl; /* rj is the point of entry to routj 7

retlabl: <81,...,an> = <Pll'p].2’oonlpin>;

Y = Pyqi /* Py, designates the value returned by routs*/
go to 20;

22: <pyyiPygrec+ePyp” = <@ys...,a >

go to r2; :
retlabz: <&1,...;an> = <p21’ p22’o-olpzn>;

-

-3

SETL-134

Lk <pk1, ka""'Pkn> =_<a1,...,an>;
~go to rk;

retlabk: <§1,-..,an> ""<Pki;pk2100-lpkn>7
Yy = P

£0: /* no-operation;. but marks the end of the
preceeding code sequence */

A statement
(7) return po;

occuring in the routine routj is treated as if it were a
transfer (5) for which the possible values of labvar are the
collection of all generated return labels retlabi appearing

in an expansion of the form (1) immediately prior to a transfer
to the point of entry to routj.

Because of the way that subprocedure calls are handled in (6},
locps containing calls will appear as multi-entry loops,

and the calculation of ud from the flow estimate determined

by udn may involve considgzible node splitting. Moreover,

the subroutine treatment which has been outlined loses sight
of the fact that a prbcedure called from one place cannot
return as if it had been called from another. We conclude

that this simple scheme for treating subprocedures
overestimates the flow of P in a significant way, and that

it should be replaced by a treatment which is more precise and
which makes repeated node splitting unnecessary. An algorithm

for calculating ud, modified to meet these objections,will

‘be sketched in the next section of the present newsletter,

The analysis that has been described in the preceeding
pages allows us to detect situations in which a procedure is
called with the wrong number of arguments.

SETL-134

These will appear as situations in which a subroutine rout
with n parameters is transmitted as value to a procedure
call f(al,...,an) requiring a number of parameters m # n.
If £ is seen to have no possible value other than rout, a
fatal diagnostic can be issued; in other cases, a nonfatal
warning is more appropriate. By making 'subroutine of n
parameters'! a type in the calculas of types described by
A. Tenenbaum additional information concerning procedures
called with the wrong number of parameters can be uncovered
by the type-finding process.

Note that the analysis which haé been described also
uncovers the call graph G of the program P. This is the
~graph whose nodes are the subprocedures sl, 52,... P, and
in which 8, is a sucessor of Sy if and only if Sy
contains a call to s,- A set of subprocedures belonging to
a strongly connected region of G are said to be corecursive
with each other, and fhe procedures belonging to them are
said to be recursive. The information made manifest in G
is useful for various optimisations, e.g. non-recursive
routines can use simplified linkage convertions.

SETL~134 ' 8

2. Calculation of the data flow mapping ud(i).

In the present section, we assume that the control flow
of P has been estimated, i.e. that we have found all variables
which can assume label or procedure values, and have estimated
the lébel and procedure values which each such variable can
assume. We will describe a procedure for calculating ud(i)
and other important data-flow related mappings from this
estimate. This procedure, largely taken from recent work
of F. Allen, treats subroutines in a special way which avoids
the objections noted in the preceeding section to the subroutine

treatment outlined there.

Our aim is to treat procedure calls as elementary
operations rather than as transfers which complicate the
flow of P. To treat a call q to a subroutine gr as elementary,
we must ascribe three values to it:

i. The collection defsof(q) of all definitions (ovariables)
occuring in sr which might supply the value of a variable
used immediately after return from gq;

ii. the collection usesin(q) of all variable-uses
(ivariables) occuring in s» which use the value which the
corresponding variable has immediately before sr is entered.

iii. The collection thru(q) of all variables v which
can be transmitted thru sr along some path clear of redefinitions

of v.

These functions are used to calculate various data~flow
related mappings, among them the set p(b) of all definitions
d which can reach the entrance to a block b along some
path.

SETL~134 : 107

The basic relationship used for calculating this function
is simply

(1) p(q) = [+: pe pred(b)] {(o(p) * thru(p) + defsof(p)),

where pred(b) is the set of predecessor blocks of b. The
relationships (1) constitute a system of equations whose
solution can in simple cases be obtained efficiently using,
e.g., the interval method.

To handle a program P containing subroutines and
subroutine calls, we proceed as follows. The flow of P is
estimated and the call graph G of P determined. As already
noted, any set of subprocedures represented by nodes of G
belonging to a strongly connected subregion is said to be
corecursive. If there exist corecursive subprocedures, we
choose a non-null set B of edges of G such that G - B
contains no cycles; B should be chosen so as to be minimal
in some appropriate sense. Each edge belonging to B re-—
presents one or more calls from one procedure Py to another '
procedure p,- For each P, appearing as the terminal node
of such an edge e, we define a formal auxiliary routine pz',
and replsce the call from Py to Py which e represents by
corresponding call from P; to p,- We then use an initial
overestimate of thru(p') and defsof(p’) for each of the
auxiliary subprocedures p' introduced in this way,taking
thru(p') to consist of all variables and defsof(p') to consist
of all global variables or parameters of p which appear on
the left-hand side of some assignment belonging either to p
~or to any procedure which might.be called, directly or in-
directly, from p. With B removed, the subgraph G - B of G
is free of cycles i.e. is a tree;and by arranging this tree .
in a linear order we succeed in arranging all of the sub~
procedures represented by é in an order in which each procedure

follows the procedures

SETL-134

(not in the set of formal aﬁxiliary routines p') which it
calls. Using Allen's term, we call this order the inverse
invokation order; and this is the order in which we will
process the collection of procedures constituting P. To
process procedure sr, we take the set of all the global

variables appearing in er and iq all the routines it calls
(which are prior to it in inverse invokation order), and
to this set append the formal parameters of sr, obtaining
a set V. Then, to reqularise the processing which will
follow, we set up a block of fbrmal assignments, one
assignment for each of the variables in V, and prefix this

11

block to the .first statement of sr. The collection of ovariables

of this block will be called the external ovariables of er

and will be designated by the symbol EXOV.

Next, we decompose sr into intervals, splitting nodes
if necessary, and use equation (1) to calculate p(q) for
each of the blocks q of sr. The values thru(p) and defsof(p)
which we use in doing this are defined as follows:

a. For a basic block p, thru(p) is the intersection
of the sets thru(x) associated with each of the individual
statements x of p. If x is an assignment statement, then
thru(x) consists of all variables other than the target
variable of x. If x is a call to a subprocedure ssr, then
thru(xz) consists of all variables v which are not substituted
for parameters p of the call x and which belong to thrufssr),
plus those variables which are substituted for some parameter
of ssr which belongs to thru(ssr). If x is a call to a
subprocedure which is somewhat indeterminate and might be
either ssr,, asrz,...,then thru(z) consists of all variables

‘v for which there exists some j such that ssr = ssrj satisfies

the condition stated in the preceeding sentence.

SETL~-134 12’

Note that since all routines called from ar preceed sr in
inverse invokation order, the value thru(ssr) will always
be available during the computation that we have just de-
scribed.

b. Let p be a basic block, x a statement of p, and
0 an ovariable of x. Then o belongs to defsof(p) if it
belongs both to defsof(x) and to thru(y) for each y in p
which follows x in the serial oxder of p. If x is an
assignment " statement, then defsof(x) is the target variable
of x. If x is a call to a subprocedure gsr, then defsof(x)
consists of all variables v which belong to defsof(ssr), plus
all variables v which are substituted for some parameter of
ssr which belongs to defsof(ssr). If x is a call to a
subprocedure which is somewhat indeterminate and might be either
8er,, €8T,, ..., then defsof(x) consists of all variables v
for which there exists some 3 such that ser = asrj satisfies
the condition stated in the preceeding sentence.

Once p(b) has been determined by using‘these conventions
and by making appropriate use of equation (1), we calculate

{2) [+: be returnstats] p(b) * EXOV,

where returnstats is the set of blocks of gr which consist
only of return statements (for convenience, each return
statement is segregated into a block of its own.) Then
thru(sr) is defined as the set of variables in V whose
corresponding ovariables belong to the set (2). 1In addition,
defsof(sr) is defined as the set

©(3) [4#: be returnstats] p(b) ~ EXOV.

823

Note that the sets thru{p) and défséf(p) which result
from our calculation satisfy thru(p) C thru(p') and defsof(p)c defsof(p’:
for each subprocedure p which is a terminal node of some
edge of the subset B of the call graph G. The sets thru(p')
and defsof(p') overestimate the true data flow functions
which should be associated with the subproccedure p; the
sets thru(p) and defsof(p) also overestimate these functions,
but not as badly. By replacing thru(p’}) and defsof(p') by
thru(p) and defeof(p) respectively and by repeating the computation
which has just been described, we can improve our estimates.

This improvement can be iterated as often as desired, in
principle even until stable estimates of the functions thru
and Jefeof result. But the high cost of iteration may only
justify one or two iterations, which anyhow should in most
cases yield reasonable estimates of thru and defsof.

Note that the function defeof(p) which the preceeding
calculation associates with a subprocedure p tells us what
assignment operaticns and procedure calls ¢ internal to p
can set the value of a global variable or parameter v when
p itself is called. In some applications we will wish to
obtain additional information, relating variables » not merely
to the procedure calls ¢ which set their variables, but to
the specific elementary operations which assign values to v
from within the routine called by e¢. This may for example
be convenient if we intended either to propagate constants
or to carry out one of the constant-propagation-like optimisation
processes described in Newsletters 130 and 131. To obtain
this additional information, we have only to note the variable

or parameter v in which we are interested, and, using the

.value defsof(c), find all the operations within the procedure

called by ¢ which set v; proceeding in this way and iterating
through sucessive subprocedure call operations until a full
transitive closure is formed, we will succeed in forming

the set defsofc(p} of all assignment statements which can
establish the values of v.

SEAL~134

Then the set defsofe(p) rather than the set defsof(p) can be (f?
taken as an expression of the use-definiticn "chaining re-

lationships in the program being analysed. An alternative

technique is to use defsof(p), but to chain each variable

in defsof(p) back to a nominal assignment v = v inserted

immediately prior to each return statement occuring in the

subprocedure p. Both of these techniques are valid for

entirely general collections of mutually corecursive procedures.

For the‘defirition~to-use' part of the data-flow analysis
process we will often need to have available a function
usestn(q) which maps each subprocedure q into the set of all
global variable or parameter uses occuring in 4. The set
ueesinf(q) is cbtained by summing, over all the blocks b of ¢, .
all uses of variables belonging to ¢ (b)*EXOV. The rule for
associating a set of uses with a block b is as follows:
Li.et ¥ be a statement of b and i an ivariable of x. Then i (:T
belongs to the set usesin(b) if it belongs both to usesin(z)
and to thruly) for each y in b which preceeds x in the serial
urder of b. If y is an assignment statement, then i belongs
to uzesin(y) if it is an argument of the operation appearing
on the right-hand side of y. If y is a call to a subprocedure
£97, then usesin(y) consists of all ivariables which either
balong to usestn(ssr) or are substituted for a parameter
belonging to usesin(ssr). If y is a call to a subprocedure
which is somewhat indeterminate and might be either 85T, S8T4,.4cy
taen useein{y) consists of all ivariables which eithexr belong
to some cne of the sets usesin(serg) or are substituted for

& parameter belconging to some one ©of these sets.

A trangitive closure technique like that described two
wparacraphs above may be used to chain definitions to the uses
the values they define, even when theses uses are reached

through a lengthy sequence of possibly recursive procedure cails.

(-
(¥a1

SETL-124

Note once more that an estimate 6f the data flow
within a program P leads to an estimate of the control
flow within P, whiéh in turn leads via the processes
described in the present section to an improved estimate
of data flow. Thus the entire data and control-flow
estimation process that has been described can be iterated.
However,. it is unlikely that more than a very few iterations
will either be feasible or required.

3. A few remarks on subroutine linkage optimisation.

Once the call graph of a program P has been determined
and the other analyses described in "the preceeding pages
have been carried out, a number of small but useful subroutine
linkage optimisations become possible. |

i. Arguments which are never read by a subprocedure
gr (i.e., ‘output' arguments) need not be transmitted when
er is called; arguments which are never modified by er need
not be returned when return is made from ar.

ii. A function-type subprocedure sr is said to be without
eide effects if sr modifies none of its parameters, modifies
no global variable, and if every variable local to sr is
dead on entry to sr. Once sr is known to be without side
effects, expressions containing calls to sr can be optimised
in ways that would be impossible if s» had side effects.
For example, redundant calculation elimination can be applied

to such expressions.

iii. A subprocedure sr is said to be non-recursive if sr
is not part of any cycle in the .call graph G of the program P.

. (Note that non-recursive subprocedures can call recursive

subprocedures and vice-versa.) Arguments to non-recursive
subprocedures need not be transmitted via a system stack,
but can be transmitted in a somewhat more efficient manner,

v

SETL-134 ‘ 16

by direct assignment to an argument area associated with sr .
Moreover, sr’s temporaries need never be stacked. This

saves stack manipulation on entry to and return from sr,
allowing relatively compact and efficient call and return S

sequences to be used.

4. Equations for the inverse function'crthis'l.

We noted in section 1 that, since the number of procedures
and explicit labels appearing in a SETL program P will
~generally be far smaller than the number of ivariables of
P, it may be preferable to calculate not the function crthis(i)
which maps each ivariable of P into the set of all ovariables
vhich can create an object which becomes the value of i,
but rather to calculate the inverse function crthis-l(o)
directly. In the present section, we will sketch a system
of eéuaticns, dual to the equations for erthis, which make
direct calculation of erthis™t possible. To this end, we
introduce a number of auxiliary functions. By {uses(o) we
designate the inverse of the function crthis(i); iuses(o)

may also be described as the set of ivariables i in which there
appears as argument an object created by evaluating o; by

ouses (o) we designate the set of all ovgriables o' in which

such an object reappears. By tholds(o). designate the collection
~of ivariables i in which there appears as argument a set
containing (as one of its members) an'object created in evaluating
o; by oholds(o) we designate the collection of ovariables o' at
which such a set can appear. By isamcomp(o)'we designate the
ivariables i in which there appears as argument a vector (of
possibly unknown length) having as component (in unknown

- position) an object created in evaluating o; by osomcomp (o) we
designate the collection of ovariables o' at which such a

vector can appear. Next, let n be an integer.

.

o

42
]
-3
g
x
)
[€V]

4 17

By icomp(o,n) we designate the collection of ivariables i

in which a vector of a known length at least egual to n,
having as its n'th component an object created in evaluating
o, appears as an argument; by occomp(o,n) we designate the
collection of ovariables o' at which such a vector can appear.

Rather than confronting the full zoo of primitive
SETL operations all at once, we shall at first simplify
our discussion by ignoring tuple operations, and by assuming
that the only four set-theoretic operations which appear
in our schematized programs P are s+t, s-t, {x}, and 3s.
(A similar procedure is used in Newsletter 131, and is
justified there.) The operations occuring in P may then
be classified as transfer, null, inclusion, extraction,
data, setalgebraic, copy, and other (non-set) algebraic
operations (see NL 131, p. 5), and to describe these respective
operation classes we introduce predicates transffo), nullf(e),
inel(c), extr(o), data(o), setalg(o), copyop(o), other(o).
The operation forms described by these predicates are

transf(o): o= il;

nullle) : o = nk;

inello) : o= {i }; f

extr(o) : o r—'ail;

datal(o) : o = data;

agtalgf(o): ‘ (for sets)
setalgple(o): o = il + iz;
setalgmns(o): o =iy - i,;

' eopy (o) o = copy(il)
otherfo) : o= il + iz; o= il - iz, etc.

{for atoms}.

For the functions fuses and 71holds we have the following

equations:

{1) iuses{o} = [+:ﬂé' € ouses(o)] du(o')
iholds(o) = [+: o' € oholds(o)] du{o').

(Here, du is the definition-to-use cﬁaining function provided
by data-flow analysis; it chains each ovariable o to the

set of all ivariables which can be reached from o along a
path free of redefinitions of the variable appearing in o).
The ocuses function obeys a slightly more complex set of
equations. If i is an ivariable, let out(7Z) designate the
target ovariable of the schematised assignment statement in
which 1 appears as an argument, and let argpos(i) denote

the (numerical) argument position in which i appears. Then
the value created by evaluating o can reappear either as

the output of a transfer operation whose argument belongs to
iusesfo), or as the output of an extraction whose argument
belongs to {holde(c). Thus we have

(2) ouses(o) = {out(i), ie iuses(o)|transf(out(i))} +

‘{out (i), ie iholds (o) |extr(out(i))}.
The equation for okolde(o) is substantially more complicated.
A set s having among its members some object created by
evalvating o can appear as the output of an operation of
transfer, setalgebraic, or copy tyve, provided that an
appropriate input argument of this operation belongs to
thold(c}. Moreover, s can appear as the output of an
inclusion operation, provided that the input to this inclusion
belengs to {uses(o). Finally, s can appear as the output
of an extraction operator o = D i. For this to happen, i
must delong to some set ohoids(o') for which o' belongs
to oholdsfo). 1In consequence of all fhese facts we have
the following equation for oholds(o):

<

SETL-124 ' 19

(3) oholds{o) = {out(i), ie iholds(o)|setalgpls(out(i)) or.
transf (out(i})or copy(out(i))}
+ {out (i), ie iholds (o) |setalgmns (out(i))and
argpos (i) egq 1}
+ {out(i), ie iuses(o)]| incl(out(i))}
+ [+: o' € oholds(o)] {out(i), ie oholds(o') |
| extr(out(i)}}.

The system of equations (1-3) can be solved by a straight-
forward monotone convergence procedure. Note that in applying
these three equations to determine data flow in the presence
of label and procedure variables, we would only calculate
oholds(o) for the relatively small number of ovariables

which define labels or procedures, and for any additional
ovariables to which our attention is directed in the course

of solving equations (1-3).

If we now pass to a discussion of full SETL by admitting
the existence of tuple operations, the preceeding eguations
undergo substantial complication: tuple operations of tuple-
former, component extractor, subtuple extractor, tail extractor,
component insertion, and tuple concatenation type, which
we designate by the predicates tform(o), compex(o),subtexf(o),
tailex(o), inzalo), and concat(o), appear in cur schematised
programs P. These classes of operators have the following

typical forms:

tform(o): © =_<il,...,in>

SETL-134 2.

®

compez(o): o= il(iz) (i; a tuple)
subtexf(o): o= il(iz:i3) "

tatlexlo): O = il(izz) "

tnxalo) : o = {il(iz) — is] {o a tuple)
coneat(o): o=1i; +1i, (i, i, tuples).

Note that the component insertion operation, which for

conformability with our general ovariable/ivariable conventions

we shall write as o = {il(iz) «-13], is ordinarily writtwn

as v(n) = c; v is both the o and the il of our schematic

convention. In what follows, we shall make use of functions

argi(o), arg2f(o),etc. which extract the first, second, etc.

components of the operator whose output ovariable is o.

It is also convenient for us to make use of two auxiliary

functions ianycomp(o) and oanycomp(o). The set ianycomp(o)

designates the collection of ivariables i in which there

appears as arqument a vector (of possibly unknown length) (:}
having as component (in a position which is either known ox |
unknown) an object created in evaluating o;‘by ocanycomp (o)

we designate the collection of ovariables at which such a

vector can appear. Note the distinction between 7scmcomp (o)

and Zanycomp(o) (and the parallel distinction between

osomeomp (o) and oanycomp(o)): an ivariable belongs to

ianycomp (o) if its value can be a vector in which a certain

object appears in any component position whether known or

unknown, but belongs to isomcomp (o) only iflthis object appears

elther in an unknown component position or in a vector whose

length is unknown. Thus tanycomp(c) always includes icomp(o,n),

while isomcomp (o} need not include tcomp(o,n). As in

Newsletter 131, we use functions known(o) and known(i), *

which have the value Q if o (resp.i) is either an integer

of unknown value or a vector of unknown length, and have

the value n if o(resp.i) is either an integer of value -
known at compile time to be n, or a vector of length (M)
known to be n.

ot SETL-124 21

I v
\ Using these conventions, we may state the following)
revised egquations for the functions fuges, 1hoids,; inomecomp,
feomp, tanycomp, iuses, oholds, osomeomp, ocomp, and canycomp.
(4) iuses(o) = [+: o' € ouses(o)] du(o');
iholds(o) = [+: o' & oholds(o)] du{o’);
icomp(o,n) = [+: o' ¢ ocomp(o,n)]{i € du(c'}|known(i} ne &};
ianycomp(o) = [+: o' € oanycomp(o)] du(o'};
isomcomp(o) = [+: o' € osomcomp(o)] du(o')+
+ [+: o' € oanycomp(o)](known(o') is k) ne Q]
[+: 1 <n <k |o' € ocomp(o,n)]
{i € du(o')|known(i) eq 0};
The equations for ouses, oholds, ocomp, oanycomp, and vsomcomp
can be written most easily if we introduce the following macro:
<ﬂ\ (5) macro againextractions(o);

({out (i), ie iholds(o) |extr(out(i)}}
+{out (i), ie isomcomp (o) |compex (cut(i))and
argpos (i) eg 1}
+{out(i,), i, € ianycomp(o)lcompex(out(il)) and
argpos (i) eq 1 and
o if (known(argZ(out(il))) is n) eq Q then t
else if icomp(o,n) eg 2 then f else il e icomp(o,n)})
endm againextractions; /* which marks the macro's end */

The set againextractions(c) is the set of all o' in which the
object created by evaluating o reappears by extraction either
of an element from a set or of a component from a tuple.
Using this macro, we may write the following equations:

SETIL-134

(6) ouses(g) = {out(i},i€iuses (0} |transf(out(i))}
+ againextractions{eo);

(7) oholds (o) = {out(i), i€iheclds(o) |
setalgpls {out{i)} or transf(out(i}) or
copy (out (i)) }
+{out (i), i€iholds(o) |setalgmns(out(i)) and
argpos (i) eq 1}
+{out(i), i€iuses(o)jincliout(i))}
+ [+: o0'€cholds ()] againextractions(o');

(8) ccomp{0,n) = /* here we assume known(o} ne 2 and
1 < n < known{o) */
{out(i), i€icomp(o,n) |transf(out(i)) or
copy{out(i)) or(concat(out(i)) and -
argpos (i) eq 1)}
+{out(i), i€iuses(o)|tform(out(i)) and argpos(i) eq n}
+{out(i), i€iuses(o)|inxa(out(i)) and argpos{i) eg 3
‘ and known(arg2(out{(i))}) eq n}
+{out (i), ilEicomp{o,n)iinxa(out(il)} and
argpos (i,) eq 1 and
: known(argZ(out(l))) ne n}
+{out(il) i Glanycomp(o)!talleﬂoutal)) and

argpos(1) eq 1 and

ilé(icomp(o,known(argz(out(il)))+n) orm nf)}
+{out(i,), iéianycomp{o)!subtex(out(il)) and
argpos({i;) eq 1 and
i,€(icomp (0,known{arg2(out(i;)))+n) orm n2}
+{out(i2), izeianycomp(o)!concat(odt(iz))ggg argposti.eg 2
and i,€(icomp(o,n-known (argl(out(i,))} orm n2)}

+ [+: o'€ocomp{o,n)] againextractions(o');

SETL-134.

(2) oanycomp (o) =

{out (i), i€oanycomp (o) |transf(out(i}) or
copy {out{i}) or concat{out{i)) or {tailex{out(i} or
subtex{out(i)) and argpos(i) eq 1) or
(inxa (out(i)} and argpos(i) ey 1))}

+{out (i), i€iuses(o)|tform(out(i,))or
(inxa(out(i)) and argpos(i) eq 3)1}

+ [+: o'€oanycomplo)] againextractions(o');

v

(10) 6somcomp(o)'=
{out(i), i€isomcomp (o) |transf{out(i)) or copy(out(i}) o
concat (out(l)) or(tailex(out(i)) and argpos{(i) egq I} or
(subtex(out (1)) and argpos (i) eq 1)1}
+ {out (i), i€ianycomp (o) |concat (out(i)) and known(out(i)} =q & and
if(known(i) is k) eq @ then £ else '
1 <3n <k | i€(icomp(o,n) orm nt)}
+ {out(i), i€ianycomp(o)|(tailex(out(i)) or
subtex{out(i))) and argpos(i) eg 1 and
known (out(i)) eq @ and if(known(i) is k) eg o then £
else 1 < 3n < k|i€icomp(o,n) omm nf}
+ {out (i), i€iuses (o) |inxa(out(i)) and argpos(i) eq 3
and(known(arg2 (out(i))) eq % or known(out(i!) eg o)}

+

{out(i), i€isomcomp(c) |inxa(out(i)) and argpos (i) eg 1}

+ [+: o'Eosomcomp (o)] againextractions (o')

+ [+: o'€oanycomp (o) |if (known(o') is k) eq @ then f

else 1 < 3n < k|o'€ocomp (o,n)] 4
o"eagainextractions(o')!knowﬁ(o") e] Q};

SETL-134

erder not te complicate the preceding egquations

n
cessarily, we have ot a few prnints written less
r

unne
rezgtrictions than could actually be applied. Most of these
clisions relate to cases in which operators transiorm tuples
of known length to tuples ¢f unknown length.

