
version 3.2 for the Apple II/ II + / Ile

User's Guide

Copyright 1982, 1983 by Steven C. Cherry

Gnosis, Inc.
4005 Chestnut Street
Philadelphia, PA 19104

Apple and Apple■on are lrademarka of Apple Compuler, Inc.

P-LISP Version 3.2 User's Manual

TABLE OF CONTENTS

Introduction .
CHAPTER 1 -- USING P-LISP

1.1 Running P-Lisp
1.2 Memory Usage .
1.3 Interpreter Overview
1.4 Special Characteristics of P-Lisp
1.5 Garbage Collection
1.6 Error Recovery
1.7 Apple Ile Owners
1.8 Using a Printer or BO-Column Card
1.9 Earlier Versions of P-Lisp
1.10 About This Manual

CHAPTER 2 -- THE P-LISP LANGUAGE
CHAPTER 3 -- P-LISP FUNCTION SUMMARY

3.1 Elementary Functions
3.1.1 QUOTE .
3. 1. 2 CAR
3 .1. 3 CDR

3.2 Elementary Predicates
3.2.1 ATOM
3.2.2 EQUAL.
3.2.3 NUMBER
3.2.4 NULL
3.2.5 MEMBER
3.2.6 ZERO

3.3 Atom/List Building Functions
3.3.1 CONS
3.3.2 LIST
3.3.3 EXPLODE
3.3.4 IMPLODE
3.3.5 COPY
3.3.6 CONC
3.3.7 APPEND
3.3.8 RPLACA
3.3.9 RPLACD
3.3.10 DELETE
3.3.11 ARRAY .
3.3.12 CHR

3.4 Numeric Functions
3.4.1 ADD
3.4.2 SUB
3.4.3 MULT
3.4.4 DIV
3.4.5 GREATER
3.4.6 ASC
3.4.7 LENGTH
3. 4. 8 INT

3.5 Boolean Functions
3.5.1 AND
3.5.2 OR.

1-1
1-2
1-2
1-2
1-2
1-3
1-4
1-4
1-5
1-5
1-5
1-6
2-1
3-1
3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-5
3-5
3-6
3-6
3-7
3-7
3-7
3-7
3-8
3-9
3-9
3-9
3-9
3-9
3-9
3-10
3-10
3-10
3-10
3-10
3-11

P-LISP Version 3.2 User's Manual

3.5.3 NOT
3.6 Atom Value and Property List Functions

3.6.1 SETQ
3.6.2 SET
3.6.3 PUT
3.6.4 GET
3.6.5 REM

3.7 Input/Output Functions
3.7.1 READ .
3.7.2 READLINE .
3.7.3 Free Format Input
3.7.4 PRINl .
3. 7. 5 PRINT .
3.7.6 QPRINl
3.7.7 QPRINT
3.7.8 GETCHR

3.8 Apple Functions
3.8.1 CALL,PEEK,POKE
3.8.2 HTAB
3.8.3 VTAB
3.8.4 Graphics .
3.8.5 ONERR.

3.9 Function Definition, Flow of Control .
3. 9 .1 DEFINE
3.9.2 LAMBDA
3.9.3 FLAMBDA
3.9.4 COND
3.9.5 PROG
3.9.6 RETURN
3.9.7 GO.
3.9.8 EVAL
3.9.9 APPLY
3.9.10 MAPCAR
3 . 9 . 11 PROGN .

3.10 Object List Functions
3.10.1 OBLIST
3.10.2 REMOB .

3.11 Debugging Aids
3 . 11. 1 TRACE .
3. 11. 2 UNTRACE
3.11.3 BREAK .

3.12 Garbage Collection
3.12.1 GC .
3.12.2 GC ...

3.13 Loading and Saving Workspace
CHAPTER 4 -- Graphics, File I/0, and Math Functions

4.1 Lores Graphics Functions
4.1.1 GR.
4.1.2 TEXT
4. 1.3 COLOR
4.1.4 PLOT

4.2 HIRES Graphics

3-11
3-11
3-11
3-12
3-12
3-12
3-13
3-13
3-13
3-13
3-14
3-15
3-15
3-15
3-15
3-15
3-16
3-16
3-16
3-16
3-16
3-16
3-17
3-17
3-17
3-18
3-19
3-20
3-20
3-20
3-21
3-22
3-22
3-22
3-23
3-23
3-23
3-23
3-23
3-24
3-24
3-25
3-25
3-26
3-26
4-1
4-1
4-1
4-1
4-1
4-1
4-1

P-LISP Version 3.2 User's Manual

4.2.1 HGR2
4.2.2 HCOLOR
4.2.3 HPLOT
4.2.4 HTO
4.2.5 DRAW
4.2.6 XDRAW

4.3 File 1/0 Functions
4.3.1 OPENSEQ
4.3.2 APPENDSEQ
4.3.3 WRITESEQ .
4.3.4 READSEQ
4.3.5 CLOSEFILE
4.3.6 CLOSE .
4.3.7 OPENRND
4.3.8 WRITERND
4.3.9 READRND
4.3.10 WRITEFCN
4.3.11 APPENDFCN

4.4 Mathematical Functions
CHAPTER 5 -- ERROR MESSAGES

5.1 Numeric Overflow
5.2 Too Few Args
5.3 Too Many Args .
5.4 Bad Atomic Arg
5.5 Bad List Arg
5.6 Bad Numeric Arg
5.7 Recursion Check
5.8 No Dominating Prog
5.9 Missing Label .
5.10 Undefined Atom
5.11 No Space

CHAPTER 6 FUNCTION EDITOR AND PRETTY PRINTER
CHAPTER 7 MEMORY MANAGEMENT .
CHAPTER 8 MACHINE LANGUAGE INTERFACE
CHAPTER 9 SAMPLE PROGRAMS

4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-5
4-5
5-1
5-2
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-3
5-3
5-3
6-1
7-1
8-1
9-1

P-LISP Version 3.2 User's Manual Page 1-1

INTRODUCTION

The following User's Guide describes how to use P-LISP, a LISP,
interpreter for the Apple II (Copyright 1982 by Steven Cherry, All
Rights Reserved) microcomputer. The manual is not intended to teach
the reader how to program in LISP; it is intended to be used as a
reference manual and assumes that the reader has already been exposed to
LISP. If you are new to LISP, we strongly recommend that you obtain a
book on LISP, such as Learning Lisp, the P-LISP Tutorial published
by Prentice-Hall, to use in conjunction with this manual.

P-LISP may be run on an Apple II+ or Apple Ile with disk (Applesoft
is required, so you can run P-LISP on an Apple II if you have Applesoft
on a language card). P-LISP has a special memory management scheme that
allows you to take ad vantage of the extra memory on a language card; if
you have more than 48K available RAM, you should reconfigure P-LISP to
use this memory, • This is explained in more detail in section 1. 6.

The P-LISP disk supplied by Gnosis contains:

the P-LISP interpreter
a function editor
a pretty printer
disk file- 1/0 functions
mathematical/trig functions
Apple IIE conversion program
several sample programs, including Towers
of Hanoi, ELIZA, and others.

This manual is organized as follows:

Chapter 1 provides some general information about using the interpreter.

Chapter 2 describes the dialect of LISP spoken by P-LISP and can serve
as a quick refresher course in LISP.

'chapter 3 is a summary of the P-LISP functions.

Chapter 4 contains a description of the graphics, file I/0, and
mathematical functions.

Chapter 5 is a listing of the P-LISP error messages.

Chapter 6 explains how to use the function editor and pretty-printer.

Chapter 7 contains information on P-LISP memory management.

Chapter 8 describes how to interface P-LISP to machine-language routines
and provides a list of interpreter entry points.

Chapter 9 explains how to use the s~mple programs supplied on the P-LISP
master disk.

P-LISP Version 3 .2 User's Manual Page 1-2

CHAPTER I -- USING P-LISP

I.I RUNNING P-LISP

The interpreter may be run either by typing BRUN LISP or by
BLOADing LISP and then typing CALL 2048, You must have Applesoft in
ROM or a language card for P-LISP to run.

1.2 MEMORY USA9E

The interpreter resides in hex locations 800-3AFF. The default
recursion stack resides in locations 3B00-3FFF. The default workspace
resides in locations 4000-95FF. The recursion stack and workspace
locations may be modified as desired; see Chapter 7 on memory
management for details,

P-LISP makes extensive use of Page Zero for pointers,
accumulators, flags, etc, Page zero should be considered off limits,
See Chapter 8 for more details on page zero usage.

1.3 INTERPRETER OVERVIEW

The P-LISP interpreter operates in what is commonly known as a
READ-EVAL-PRINT loop: it reads some input, evaluates it, prints a
result, and waits for more input. The normal interpreter input prompt
is the colon, 11: ". Evaluation may be suspended by typing ctrl-S and
interrupted by typing ctrl-C. If an evaluation is interrupted, either
by ctrl-C or as the result of an error condition, the interpreter
enters "break" mode, and the input prompt changes to the plus sign,
"+". Break mode is further explained in Chapter 5.

P-LISP s-expressions must always have an equal number of left and
right parentheses, Since counting parentheses can sometimes be a real
pain, typing a lot of extra right parens at the end of a s-expr is
sufficient; the extra parens will be ignored, For example,

:(a (b (c (d
:)))))))))

is equivalent to

:(a (b (c (d))))

Anything following a semicolo~ is ignored by the interpreter,
Thus semicolons can be used if you wish to document a function
definition in a text file, for example,

(DEFINE (BLEAT (LAMBDA (X) ;one argument function
(MOO (CDR X)) ;call MOO with the CDR
))) and return

P-LISP Version 3.2 User's Manual Page 1-3

String atoms may be delimited on the right by either a double
quote or a carriage return: thus

: "foo bar"

and

: "foo bar (carriage return)

are equivalent.

P-LISP uses Applesoft entry points for parsing numeric atoms and
for numeric computations. Because of this, you should be aware of a
particular P-LISP anomaly: as a result of DOS, Applesoft, and P-LISP
competing for the same page zero space, a NUMERIC OVERFLOW error will
occasionally occur if a numeric atom is entered after several disk I/O
operations. In these cases, the error is not really an overflow but
rather an OUT OF MEMORY error that Applesoft generates because it gets
confused. Hitting RESET in such cases will usually clear things up.

If you enter the monitor from P-LISP, ctrl-Y can be used to
re-enter the interpreter.

1.4 SPECIAL CHARACTERISTICS OF P-LISP

There is no restriction on the lengths of atom print names;
however, shorter print names consume less memory.

There is no limit to the nesting level of lists; however, deep
nesting may cause a RECURSION CHECK during garbage collection (see
section 1. 5 below).

All of the Apple DOS commands (as well as PR#n and IN#n) can be
entered from LISP. Thus, it is possible to save function definitions
in a text file and then add the functions to your workspace by simply
EXECing the file. Note that this feature can sometimes produce
unexpected results: in particular, you should not embed DOS commands
in a function definition because DOS sees them before P-LISP does.

P-LISP is best used in conjunction with a text editor, The
editor can be used to create functions, which can then be EXECed into
a P-LISP workspace. There are also LISP functions available that
write LISP function definitions to a text file.

P-LISP makes slight modifications to DOS. You should reboot DOS
after exiting P-LISP (typing INT or FP will exit P-LISP).

P-LISP saves workspaces using the ;pecial file type S, Because
of this, certain copy programs will not copy these files correctly.

P-LISP Version 3. 2 User's Manual Page 1-4

1.5 GARBAGE COLLECTION

During the course of an evaluation, the interpreter consumes
memory "cells" for temporary storage and for creating new lists and
atoms. The Garbage Collector is invoked whenever the interpreter runs
out of these cells. Whenever the Garbage Collector is invoked, the
message 11** GARBAGE COLLECTION **" is printed, followed by the number
of cells collected (this message can be suppressed; see Chapter 3 for
details). You are rapidly approaching the limits of the interpreter's
capabilities if a gar-bage collection results in less than 300 cells.
Note: you should NEVER hit RESET during a garbage collection. Doing
so will destroy the contents of your workspace,

1.6 ERROR RECOVERY

The following procedure should be followed if your results are
not as you expect, or if P-LISP gives you error message:

1) Check all user-defined fo..:nctions. Make sure all
parentheses are where they should be (this is a common source of
errors!). Use the trace facilities to track down bugs. (see
chapter 3)

2) Check recursion levels.

3) Be sure that functions that should not be traced are not
being traced. See Chapter 3 Section 11 for details.

4) It is generally a good idea to save your work space before
testing your functions, since your functions may damage the work
space if they are written incorrectly. Good programming practice
dictates that you test your "help" functions first on data which
will give known results before testing your main functions,

5) Examine local atom bindings. This means that you should
use the suspended execution mode to take a look at the values of
your atoms WHILE STILL IN THE FUNCTION. See chapter 4 for the
explanation of this mode.

P-LISP Version 3.2 User's Manual Page 1-5

1. 7 APPLE Ile OWNERS

If you are using an Apple Ile, or an Apple II+ with a language
card, you can reconfigure your copy of the interpreter to take
advantage of the extra memory. The P-LISP disk contains a program
called CONVERT which will make the appropriate changes to the
interpreter's memory map to use memory locations D000-FFFF. To
reconfigure the interpreter, do thf' following:

1) Put the P-LISP disk in a drive and BRUN CONVERT.
2) The program will ask you to put a disk containing a copy of the
interpreter into the same drive and then hit RETURN.
3) The program will then update the memory map. As a precautionary
measure, you should be sure you update only a BACKUP COPY of the
interpreter, NOT your original copy.

You can also do this reconfiguration manually if you so desire.
See Chapter 7 for details.

1.8 USING A PRINTER OR SO-COLUMN CARD

P-LISP is designed to work with any display device of arbitrary
width. By default, the interpreter assumes that the display device
has a width of 40 columns. This can be changed by simply POKEing the
desired display width into Page Zero location 240 (hex location $F0).
(See Chapter 3 for details on the POKE function). Note that if you
are using a printer you must do this in addition to sending the usual
control sequences to the printer so it will print more than 40
columns.

1, 9 EARLIER VERSIONS OF P-LISP

The current release version of P-LISP is version 3. 2. This
version contains several enhancements over earlier versions of the
interpreter, including the addition of new functions, modifications to
existing functions, and performance improvements. If you are a
current user of a version of P-LISP earlier than this release, you
should make note of the following changes:

1) new functions MEMBER, READLINE, ASC, QPRINl, and QPRINT have been
added.

2) The functions APPLY, ARRAY, CHR, GETCHR, GO, and REMOB have been
modified.

3) FREAD and FREADLJNE have been de-implemented, although their
effect can still be achieved, See Chapter 3 under READ for details.

4) QP has been de-implemented. The effect of QP can now be obtained
by QPRINl and QPRINT. See Chapter 3 for details.

P-LISP Version 3,2 User's Manual Page 1-6

5) *UNDEF has been deimplemented. Taking the CAR of an atom will
now cause an error.

6) String atoms are now implemented differently. A string atom is
now considered a constant (like a numeric atom) and does not have a
property list. Chapter 2 contains more details.

7) Applesoft in R'OM is now required. All mathematical calculations
are done in floating point.

8) Error-checking for some SUBRs has been relaxed.

9) The interpreter is 15-20% faster than older versions.

10) Some 1/0 anomalies that occured when using a printer or an
80-column card have been corrected (see Section 1. 7).

11) P-LlSP no longer docs any special output formatting for trace or
error messages. Output is no longer indented.

I 2) The function ed_itor and prett.y-printer have been improved.

13) The nesting level of PROGs is now limited to the size of the
recursion stack.

1.10 ABOUT THIS MANUAL

Throughout this manual, any input that should be typed by the
users appears in lower case, and anything that the computer responds
with will be in upper case.

Ex:
: (print "'hello there computer")

HELLO THERE COMPUTER

0
NOTE: At certain times in the text, there will be special,
indented passages. These mean that there is some special thing
to take note of, such as a programming tip, or something that

- is commonly done wrong, and you should watch out for it. The
face you see on the side is named GNORMAN (from GNOSIS, where
else?), and he is there to remind you to take special note.

P-LISP Version 3 .2 User's Manual Page 2-1

CHAPTER 2 -- THE P-LISP LANGUAGE

This chapter will briefly disct•,:,s the basic structures and
mechanisms of LISP in general and P-LISP in particular, It is not
intended to teach the reader LISP programming; for this we direct the
reader to the P-LISP Tutorial, However, the chapter does introduce
the novice user to LISP and can also serve as a quick refresher course
for those already well versed _in LISP.

LISP stands for "LISt Processor," It was developed by John
McCarthy at MIT in the late 1950 1s, originally as a tool for
mathematical research. Because of its unique features, LISP quickly
caught on as the language of choice for any application requiring the
symbolic manipulation of data, Unlike many other programming
languages, like FORTRAN, PASCAL, COBOL, and others, there is no LISP
"standard"; there are as many dialects of LISP as there are
implementations, P-LISP is loosely based on MTSLISP, a dialect
developed at the University of Michigan.

Some of the major strengths and features of LISP can be outlined
as follows:

--LISP uses the same ·data structure to represent both functions and
data. Since programs and data are indistinguishable (as far as the
LISP interpreter is concerned), it is relatively easy to write LISP
programs that construct and execute other LISP programs,

--LISP is interpreted, providing the user with immediate response.
The interactive nature of LISP provides a friendly .environment for
program development.

--LISP has a simple and uniform syntax; there are only a few rules
to remember, and they quickly become second nature,

--LISP is ideal for applications requiring symbolic manipulation
because the mechanisms needed for such an application are built
into the language. Thus, for example, a program to differentiate
polynomials might be a chore to write in BASIC or PASCAL, but is
relatively simple and straightforward in LISP.

--LISP is an heirarchical language; it is possible to build
LISP-like languages (such as Smalltalk, Prolog, Logo, etc) out of a
LISP "toolkit 11

•

The basic unit of information in LISP is the "atom, 11 There are
three kinds of atoms: "literal" atoms, "numeric" atoms, and "string"
atoms. A literal atom is represented by a string of characters of
arbitrary length, For example, the following are literal atoms:

APPLE
THISISAVERYLONGATOM

P-LISP Version 3.2 User's Manual

ABC83KR
#%&?

Page 2-2

A numeric atom is simply a number; it can· be either an integer or
a floating-point number, Thus, the following are numeric atoms:

61
-37
3,14159
l.7e+09

String atoms are strings of characters surrounded by quotes, The
following are examples of string atoms:

"good morning"
"what's all this then"
"282 is a number"

Atoms can be combined to for.,, the basic data structure of LISP,
the "list. 11 A list is a sequence of "symbolic expressions 11

, or
"s-exprs", bound by a pair of parentheses, where a s-expr is defined
to be an atom or a list. So,

(ABC)

is a list comprised of three s-exprs, the atoms A, B, and C,
Similarly,

(HAIL AND (WELL MET))

is a list comprised of three s-exprs, namely the atom HAIL, the atom
AND, and the list (WELL MET), which itself is comprised of the two
atoms WELL and MET. A list may contain any number of atoms or lists
as its elements.

One list important to the LISP system is the object list, or
OBLIST, The OBLIST is a list of all literal atoms that the
interpreter knows about. Whenever a literal atom is typed into LISP,
the atom is added to the OBLIST if it is not already there; there can
only be one instance of a given literal atom. Numeric and string
atoms are handled differently; these atoms are not stored on the
OBLIST, but rather, a separate instance of such atoms is created
whenever they are typed in.

At the heart of LISP is the Evaluator. Whenever you type
something into LISP, the interpret,,,· tries to evaluate what you typed
in and return the result (this is known as a READ-EV AL-PRINT loop).
The following rule is used for evaluating lists: LISP treats the
first element of the list as the name of a function, and the remaining
elements (if any) as the arguments to the function. So, if you type
(A B C) into LISP, the interpreter will try to apply some function
named A to the arguments B and C, For example, to add two numbers

P-LISP Version 3.2 User's Manual Page 2-3

together, the ADD function is used; typing the list (ADD 1 2) will
cause the interpreter to apply the ADD function to the arguments 1 and
2, returning the result 3.

In LISP, all s-exprs are considered to have values. The value of
the s-expr (ADD 1 2) is the numeric atom 3. What about atoms?
Numeric and string atoms are treat<:d as "constants": they have
themselves as values. So, if you type the numeric atom 25 into LISP,
its value is returned, namely ~5. Similarly, giving the evaluator a
string atom causes the -evaluator to return the a:tom.

Literal atoms can be assigned arbitrary values. The value of a
literal atom can be any s-expr. The LISP function SETQ is used to
assign values to atoms; the first argument to SETQ is the atom to be
assigned, and the second argument is the v.alue, So, typing

(SETQ A 1)

sets the value of A to 1. Now, whenever the atom A is typed into
LISP, the value 1 will be returned.

Two literal atoms have pre-defined values. One of these is the
atom NIL; the value of NIL is NIL. NIL is also used to represent a
list containing zero elements, i.e., (). NIL is also used to
represent the truth value "false". Another literal atom, T, is used
to represent the truth value "true"; the value of T is T.

For most functions, LISP evaluates the function's arguments and
then applies the function to the argument values. Thus, if A is
SETQed to 1, and B is SETQed to 2, then typing

(ADD A B)

will result in the value 3 (the arg11a.1ents A and B are evaluated,
resulting in 1 and 2, to which the ADD function is then applied).

QUOTE is a function which is used to prevent evaluation of a
s-expr. The apostrophe I is used as a shorthand for QUOTE. Thus,
typing

(F 'A 1B)

causes the function F to be applied to the atoms A and B, RATHER than
the VALUES of the atoms A and B. Typing

'A

is the same as typing

(QUOTE A).

Two of the fundamental LISP functions are called CAR and CDR.

P-LISP Version 3.2 User's Manual Page 2-4

The function CAR takes a list and returns the first element of the
list. So, typing

(CAR '(ONE TWO THREE))

returns the first element of the list (ONE TWO THREE), namely the atom
ONE, The function CDR is the complement of CAR; given a list, CDR
returns the list minus the first element. So,

(CDR '(ONE ·TWO THREE))

returns the list (TWO THREE). Note that taking the CDR of a
one-element list, like

(CDR '(FOUR))

results in the empty list, NIL.

Lists can be put together as well as be taken apart, The
function CONS takes two arguments and returns a list which has the
first argument as its CAR and the second argument as its CDR, So,

(CONS 'THIS '(IS FUN))

returns the list (THIS IS FUN),

One area where the pre-defined atoms T and NIL come into play is
with "predicates". Predicates are functions that perform a certain
test on their arguments and return T if the argument passes the test
and NIL if it fails, One such predicate is ATOM, which returns T if
its argument is an atom and NIL otherwise. So,

(ATOM '(IM A LIST))

returns NIL, whereas

(ATOM 'BOMB)

returns T,

LISP wouldn't be much fun or useful unless you were able to
create your own functions. The LISP function DEFINE is used to define
functions, The general form of a function definition is as follows:

(DEFINE (function-name (LAMBDA (formal arguments)
function-body

)))

The function name must be a Iii.era! atom, A "LAMBDA-expression"
follows the function name; all user-defined functions must be a form
of LAMBDA-expression. The LAMBDA is followed by a list of the
function's "formal arguments"; this list tells LISP the number of

P-LISP Version 3.2 User's Manual Page 2-5

actual arguments the function takes, and how these arguments are
referred to in the body of the function. The formal argument list is
followed by the function body, which is a s-expr whose value is
returned when the function is invoked,

As an example, suppose you want a function that returns the
second element of a list; that is, if you gave the function the list
(A B C). you want the function to return B, Call this function
SECOND:

(DEFINE (SECOND (LAMBDA (X)
(CAR (CDR X))

)))

X is the formal argument to SECOND,· When SECOND is invoked, X is
bound (SETQed) to the value of the actual argument. Then, the body of
the function is evaluated and the value is returned, When SECOND is
exited, X is restored to whatever value it had before SECOND is
entered. So, if you type

(SECOND '(ABC))

the argument is evaluated, returning (A B C) (because of the quote),
which is assigned to the formal argument x·, The body of the function
is evaluated, returning the CAR of the CDR of X, which is B. The
function is then exited, with X restored to its previous value.

Function definitions are stored on an atom's "property list", A
property list is a list of properties and property values that may be
associated with a literal atom, For example, you may want to assign
the property COLOR to the atom BALL with the property value RED. This
is accomplished via the LISP function PUT; typing

(PUT 'BALL 'COLOR 'RED)

stores the property COLOR with value RED on the property list of atom
BALL, The function GET returns vroperty values; typing

(GET 'BALL 'COLOR)

will now return the property value RED.

Functions defined by the user are called EXP Rs; thus, for the
function SECOND defined above, SECOND has the property EXPR on its
property list, with the property value being the function definition.
Built-in functions are called SUBRs; the property value for the SUBR
property is a pointer to the machine-language routine in the
interpreter that evaluates the function,

P-LISP uses the following method for evaluating s-exprs; if the
CAR of the s-expr is an EXPR, that EXPR is evaluated, Otherwise, if
the CAR is a SUBR, that SUBR is evaluated, If the CAR is neither an

P-LISP Version 3.2 User's Manual Page 2-6

EXPR nor a SUBR, the interpreter will evaluate the CAR, then check if
the value is an EXPR, a SUBR, etc. The interpeter will continue this
evaluation until an EXPR or SUBR is reached; if an atom is reached
that is neither an EXPR nor a SUBR and has no value, the interpreter
will complain with an error. For example, using the function SECOND
defined above, you can type

: ((car '(second)) 1(d e f))

The CAR of the s-expr will be evaluated, returning SECOND, which will
then be applied to the argument, returning the atom E.

There is much more to LISP than has been described here. The
following chapters, in conjunction with Learning Lisp, the P-Lisp
Tutorial, should help the novice gain more familiarity with the
language than this brief introduction has been able to provide,
Learning Lisp is a very helpful book containing many clear
examples using P-Lisp, and is available from Gnosis, Prentice-Hall
Publishers, most bookstores or an authorized dealer,

P-LISP Version 3.2 User's Manual Page 3-1

CHAPTER 3 -- P-LISP FUNCTION SUMMARY

NOTE: In the following descriptions, (s) represents a s-expr,
(a) an atom, (L) a list, and (na) a numeric atom. It is
understood that all arguments are evaluated before the
function is applied unless stated otherwise.

In the examples below, user input is presented in lower-case, and
the interpreter's response,s are in upper-case.

3,1 ELEMENTARY FUNCTIONS

3.1.1 (QUOTE (s))

QUOTE is a pseudo-function used to prevent evaluation of an
argument. The argument (s) is NOT evaluated. The value of (QUOTE
(s)) is (s). The punctuation mark I is used as a shorthand for QUOTE
for input purposes; thus 'A and (QUOTE A) are equivalent.

Ex:

A

:'(this is a list)
(THIS IS A LIST)

: (quote (b c))
(BC)

3,1.2 (CAR (L))

CAR returns the the first element of a list. If (L) is NIL then
CAR returns NIL.

Ex:
:(car 1(a b))
A

:(car '((this is) a test))
(THIS IS)

3,1.3 (CDR (s))

The argument to CDR may be either a list or a literal atom. IF
(s) is a list, CDR returns the list without its first element. If (s)
is a literal atom, CDR returns the atom's property list.

P-LISP Version 3 .2 User's Manual

Ex:
:(cdr '(a b c))

(BC)

:(cdr 'car)
(SUBR *)

:(cdr '(coulder))
NIL

3.2 ELEMENTARY PREDICATES

3.2.l (ATOM (s))

ATOM returns T if (s) is an atom; otherwise, NIL.

Ex:
: (atom 'bomb)
T

: (atom '(im a list))
NIL

: (atom "deoxyribonucleic acid")
T

3.2.2 (EQUAL (sl) (s2))

Page 3-2

EQUAL returns T if (sl) and (s2) are equal and NIL otherwise.
Equality is defined as follows: if the arguments are lists, the lists
are EQUAL if they have the same list structure; if the arguments are
atoms, they are EQUAL if they are the same literal atom, if they are
numeric atoms with the same numeric value, or if they are string atoms
consisting of the same sequence of characters.

Ex:
:(equal 'a 'a)
T

:(equal '(hi there) '(hi there))
T

:(equal '(hi there) '(hi where))
NIL

:(equal 25 (mult 12.5 2))
T

:(equal "neutron" "neutron")
T

P-LISP Version 3.2 User's Manual Page 3-3

3.2.3 (NUMBER (s))

NUMBER returns T if (s) is a numeric atom; otherwise, NIL.

Ex:
:(number 3.493)
T

: (number 'bleat)
NH,

:(number -1)
T

3.2.4 (NULL (s))

NULL returns T if (s) is NIL; otherwise, NIL.

Ex:
: (null ())
T

: (null '(not null))
NIL •

3.2.5 (MEMBER (s) (L))

MEMBER returns T if (s) is EQUAL to an element of (L), and NIL
otherwise.

Ex:
: (member 'what '(which what where))

T

: (member 12 °(11 (12) 13))
NIL

:(member '(goo) '((gee) (gaa) (goo))
T

3.2.6 (ZERO (na))

ZERO returns T if (na) is zero; otherwise, NIL.

Ex:
:(zero (sub 2 2))
T

:(zero (add 3 2))
NIL

P-LISP Version 3.2 User's Manual

3.3 ATOM/LIST BUILDING FUNCTIONS

3,3,1 (CONS (sl) (s2))

Page 3-4

CONS is used to construct new lists, CONS returns a list whose
CAR is (sl) and whose CDR is (s2). If (s2) is an atom, a special form
of list, called a "dotted pair", is formed. The dotted pair construct
is more or less a holdover from the early days of LISP and is not used
much.

Ex:
: (cons 'hi '(there))

(HI THERE)

:(cons 'thisatom ())
(THISATOM)

:(cons 24 91)
(24 . 91)

:(cons '(meow) 'arf)
((MEOW) . ARF)

3.3.2 (LIST (sl) (s2) ... (sn))

LIST takes any number of arguments and returns a list whose
elements are the given arguments. If no arguments are supplied, LIST
returns NIL.

Ex:
: (list 'this 'is '(a list))

(THIS IS (A LIST))

:(list 'n)
(N)

:(list 'thisatom ())
(THISATOM NIL)

: (I is t)
NIL

3.3.3 (EXPLODE (a))

EXPLODE takes as its argument an atom and returns a list of atoms
whose print names are the individual characters of the atom's print
name. The atom may be literal, numeric or string. For a numeric
atom, EXPLODE will rctu,·n a list of numeric atoms representing the
number's digits. EXPLODEi11g a string atom has the same effect as
exploding a literal atom,

P-LISP Version 3.2 User's Manual

Ex:
: (explode 'boom)
(BOOM)

:(explode 54721)
(54721)

: (explode "meow")
(MEOW)

3.3.4 (IMPLODE (L))

Page 3-5

IMPLODE does the reverse of EXPLODE. IMPLODE takes a list of
atoms and returns an atom whose print name is a concatenation of the
print names of the atoms in the list. If the first element of the
list is a literal atom, IMPLODE will create a literal atom from the
list. If the first element is a numeric atom, IMPLODE will create a
numeric atom. Note that in this case any non-numeric atoms in the
list will cause the remainder of the list to be ignored (see example).
If the first element of the list is a double quote, IMPLODE will
return a string atom (this can be achieved by CONSing a (chr 34),
which returns a double quote, onto the desired list of atoms).

Ex:
: (implode 1 (a p p 1 e P e))
APPLEPIE

: (implode '(l 2 9 4 1))
12941

: (implode '(3 2 a q 5))
32

: (implode (cons (chr 34) '(a e o u)))
"aeiou"

Note that a string atom can be converted to a literal or numeric
atom by EXPLODEing it and then IMPLODEing the result. For example,

Ex:
: (implode (explode II garp"))
GARP

:(implode (explode 11234 11))

234

3.5 (COPY (s))

COPY returns a copy of its argument. If (s) is atomic, COPY
returns the atom but does NOT make a copy of the atom. If (s) is a

P-LISP Version 3.2 User's Manual

list, COPY returns a copy to the list.

Ex:
: (copy 'cat)

CAT

: (copy '(this that those))
(THIS THAT THOSE)

3,3.6 (CONG (Ll) (L2) . , .(Ln))

Page 3-6

All the arguments to CONG must be lists, CONG returns a
concatented list of copies of the arguments (Ll) through (Ln), That
is, CONG makes a copy of each list and then connects the end of each
list to the beginning of the next list. If NIL is one of the
arguments, it is ignored,

Ex:
: (cone ' (a) '(b))

(AB)

: (cone '(take) '(me) nil '(to your leader))
(TAKE ME TO YOUR LEADER)

3.3.7 (APPEND (L) (sl) (s2) ... (sn))

APPEND returns a copy of the list (L) with s-exprs (sl) through
(sn) appended to the end of the list as new elements, If (L) is NIL,
APPEND simply returns the LIST of the remaining arguments, APPEND is
the same as CONCatenating the first argument with the LIST of the
remaining arguments,

Ex:
:(append '(a b) '(c d) 'e)

(A B (C D) E)

:(append 1 (take) '(me) nil '(to your leader))
(TAKE (ME) NIL (TO YOUR LEADER))

In both CONG and APPEND, the list arguments are copied because
the functions modify their structure, For example, if the value of L
is (A LIST), then after

: (append L '(and another))
(A LIST (AND ANOTHER))

the value of L is still (A LIST), since the APPEND made a copy of L
before appending the second argument.

P-LISP Version 3.2 User's Manual Page 3-7

3.3.B (RPLACA (L) (s))

RPLACA replaces the CAR of (L) with (s) and returns the result.
REPLACA is considered a destructive function, in that it directly
modifies the list (L) rather than a copy of (L). Thus all s-exprs
that reference (L) will reference the new (L). Contrast this to
APPEND and CONC, both of which make copies of their arguments first.

Ex:
: (rplaca '(this is a list) 'where)

(WHERE IS A LIST)

:(rplaca '(write this carefully) 'read)
(READ THIS CAREFULLY)

3.3.9 (RPLACD (L) (s)

RPLACD replaces the CDR of (L) with (s) and returns the result.
Like RPLACA, RPLACD is destructive.

Ex:
: (rplacd '(change this) '(to that))

(CHANGE TO THAT)

WARNING: Both RPLACA and RPLACD can be very dangerous, Use
them with caution.

3,3.10 (DELETE (S) (L)).

DELETE deletes all occurrences of (s) from (L) and returns the
result. DELETE deletes those elements of (L) that are EQUAL to (s).
Like APPEND and CONC, DELETE makes a copy of (L) before doing the
deletion.

Ex:
:(delete 'a '(d a cab a))

(DCB)

: (delete '(howdy) '(this (howdy) is (howdy) it))
(THIS IS IT)

3.3.11 (ARRAY (Ll) (L2))

ARRAY is used to select specific elements or sub-elements of a
list. (Ll) is the list of indices into the "array"; (L2) is the
"array", the list to be indexed. ARRAY returns the s-expr in (L2)
which resides at the "address" indicated by (Ll); if (Ll) does not
select a valid element (by indexing a non-existent element or trying
to index an a tom), ARRAY returns NIL. Note that the elements of (Ll)

P-LISP Version 3.2 User's Manual

are evaluated before ARRAY is applied.

Ex:
Assume that LIST is the list

((A BC) (DEF) (G H I))

: (array 1(1) list)
(ABC)

: (array ' (2) list)
(D E F)

: (array 1(3 2) list)
H

: (array 1 (4) list)
NIL

If I is SETQed to 1, and J is SETQed to 2, then

: (array '(i j) list)
B

3,3.12 (CHR (na))

Page 3-8

CHR returns a one-character string atom which is the ASCII
character corresponding to the value of (na). This is analogous to
the CHR$ function of Applesoft.

Ex:
: (chr 65)
"A"

: (chr 40)
II (II

J.>-LISP Version 3.2 User's Manual

3.4 NUMERIC FUNCTIONS

3.4.1 (ADD (nal) (na2))

Page 3-9

The arguments to A DD must be numeric atoms. ADD returns the sum
of the arguments. There must be two arguments.

Ex:
:(add34)
7 ,

3.4.2 (SUB (nal) (na2))

SUB subtracts (na2) from (nal) and returns the result. The
arguments must be numeric atoms.

Ex:
:(sub 5 8)
-3

3.4.3 (MULT (nal) (na2))

MULT returns the product of (nal) times (na2).

Ex:
:(mult 5 7)
35

3.4.4 (DIV (nal) (na2))

DIV returns the quotient of (nal) divided by (na2).

Ex:
: (div 12 2)
6

:(div 9 4)
2.25

3.4.5 (GREATER (nal) (na2))

GREATER returns T if (nal) is strictly greater than (na2);
otherwise, NIL.

Ex:
: (greater 1 -1)

T

: (greater 3 3)
NIL

P-LISP Version 3.2 User's Manual Page 3-10

3.4.6 (ASC (a))

ASC returns the ASCII value of the first character of the print
name of (a). (a) can be either a literal or a string atom,

Ex:
: (asc 'apple)

65

:(ase "lisp")
76

3.4.7 (LENGTH (L))

LENGTH returns the number of elements of a list.

Ex:

:(length {))
0

: (length '(how long is (this list)))
4

3.4.8 (INT (na))

INT returns the integer part of a floating point numeric atom.

Ex:
: (int 371.63)
371

3.5 BOOLEAN FUNCTIONS

3.5.1 (AND (sl) (s2) ... (sn))

AND performs a boolean AND on its arguments. AND evaluates each
argument in succession; if one of the arguments evaluates to NIL, AND
returns NIL and the remaining arguments are NOT evaluated. If none of
the arguments evaluate to NIL, AND returns the value of the last
argument.

Ex:
:(and (null{)) (add 3 7))

10

: (and (zero 3) (list t))
NIL

and the LIST s-expr is not evaluated.

P-LISP Version 3.2 User's Manual Page 3-11

3.5.2 (OR (sl) (s2) ... (sn))

OR performs a boolean OR on its arguments. Each argument is
evaluated in succession; if one of the arguments evaluates to a
non-NIL value, OR returns that value and the remaining arguments are
NOT evaluated, If all arguments evaluate to NIL, OR returns NIL.

Ex:
:(or.(null t) (cons 'a '(b)))

(AB)

:(or (greater 4 2) (car '(hi there)))
T

and the CAR s-expr is not evaluated.

3.5.3 (NOT (s))

NOT returns NIL if (s) is non-NIL: otherwise, T.

Ex:
:(not (and (null ()) (car nil)))
T

:(not (or (zero 0) (car '(ab))))
NIL

3.6. ATOM VALUE AND PROPERTY LIST FUNCTIONS

3,6.1 (SETQ (al) (sl) ... (an) (sn))

SETQ is used to set the value of an atom. The value of each (ai)
is set to the corresponding (si), and the value of the last (si) is
returned as the value of the SETQ. Note that each (ai) is NOT
evaluated, but each (si) IS evaluated. In addition, each (ai) must be
a Ii teral a tom.

Ex:
: (setq a (cdr '(this is)) b '(a list))

(A LIST)

sets the value of A to (IS) and the value of B to (A LIST).

P-LISP Version 3.2 User's Manual Page 3-12

3,6.2 (SET (al) (sl) , , , (an) (sn))

SET works like SETQ, except that each (ai) IS evaluated before
the SET is applied, and must evaluate to an atom,

Ex:
:(set 1a 1(a list))

(A LIST)

sets the value ,of A to (A LIST),

: (set 'b 'c b '(another list))
(ANOTHER LIST)

sets the value of B to C and the value of the value of B
(which is now C) to (ANOTHER LIST),

3,6,3 (PUT (a) (prop) (pval))

PUT is used to put properties and values on an atom's property
list (p-list), PUT puts the property (prop) with property value
(pval) on the p-list of atom (a), Both (a) and (prop) must be literal
atoms; (pval) can be any s-expr. PUT returns the assigned property
value.

Ex:
: (put 'apple 'color 'red)
RED

puts the property COLOR with value RED on the p-list of APPLE, Thus
(CDR 'APPLE) returns (COLOR RED). If we now enter

:(put 'apple 'fruit T)
T

then (CDR 'APPLE) is now (COLOR RED FRUIT T),

If (prop) is already on (a)'s p-list, (pval) replaces the old
property value. Thus, if we enter

: (put 'apple 'color 'green)
GREEN

then (CDR 'APPLE) is now (COLOR GREEN FRUIT T).

3.6.4 (GET (a) (prop))

GET returns the property value of property (prop) from the p-list
of atom (a), If (prop) is not on (a)'s p-list, GET returns NIL. (a)
and (prop) must be literal atoms,

P-LISP Version 3.2 User's Manual

Ex: Using the above example for PUT,

: (get 'apple 'color)
RED

: (get 'apple 'size)
NIL

3,6,5 (REM (a) (prop))

Page 3-13

REM removes the property (prop) and the associated value from the
p-list of atom (a). REM always returns NIL. Note the property (prop)
does not necessarily have to be on ft\e p-list of (a), in which case
REM has no effect.

Ex: Using the above examples,

: (rem 'apple 'color)
NIL

and (CDR 'APPLE) is now (FRUIT T).

:(rem 'apple 'size)
NIL

and the p-list of APPLE is unchanged.

3.7 INPUT/OUTPUT FUNCTIONS

3,7.1 (READ)

READ causes the interpreter to read input from the current input
device. READ will return when a s-expr has been read, returning the
s-expr as its value. The question mark '? 1 is the input prompt for
READ.

Ex:
:(setq X (read))

will set the value of X to be whatever is input from the current input
device, Note that the input is NOT evaluated.

3.7.2 (READLINE)

Like READ, READLINE causes the interpreter to read input from the
current input' device. READLINE will read a complete line of text, up
to a delimiting carriage return, and form a list of the all the
s-exprs read from the line of text. The list is returned as the yalue
of READLINE.

P-LISP Version 3 .2 User's Manual

Ex: After typing in

: (read line)

and then entering a line of text,

?this is a test

REA OLINE will return the list

(THIS IS A TEST).

3.7.3 11Free-format" Input

Page 3-14

It is possible to cause READ a~d READLINE to behave as though
the input consisted entirely of literal atoms. Use of this feature
may be desirable, for example, if it is necessary to enter streams of
atoms which contain LISP punctuation marks in their print names. To
get this effect, the value 255 should be POKEd into page zero location
253 ($FD hex). After doing this, all subsequent READs will be
11free-format 11 READs. Note that you should only do this from within a
function and NOT from the keyboard; EVERYTHING you type in after the
POKE will be treated as though it were a literal atom. The
interpreter can be restored to doing normal READs by POKEing a value
of O into location 253. The interpeter is also restored by a RESET or
an error.

Ex: Suppose you define the following function:

: (define (freadline (hmbda ()
(prog (r)

)
:)))

(poke 253 255)
(setq r (read line))
(poke 253 O)
(return r)

Now, if you invoke this function and then type

?i don't (know)

the function will return the list

(I DON'T (KNOW) .)

This list consists of four atoms: the atom I, the atom DON'T,
the atom (KNOW), and the atom 1 • 1 • Be aware that although (KNOW)
LOOKS like a list, it is actually an atom whose print name consists of
the characters (, K, N, 0, W, and) , this being a result of the
free-format READ.

P-LISP Version 3.2 User's Manual Page 3-15

3.7.4 (PRINl (s))

PR!Nl prints the s-expr (s) on the current output device and
returns (s). PRINl begins printing at the current cursor position and
does NOT execute a carriage return after printing. If (s) is omitted,
PRINl executes a single carriage return and returns NIL. Note that
string atoms are printed with the delimiting quotes. See the
description of QPRINl below to avoid this.

Ex:
: (progn (prinl 'this) (prinl "that"))
THIS "THAT"

3.7.5 (PRINT (s))

PRINT works like PRIN1 except that PRINT DOES execute a carriage
return after printing the argument (s). If (s) is omitted, PRINT
executes TWO carriage returns and returns NIL.

3.7.6 (QPRINl (s))

QPRINl works like PRINl with the exception that string atoms are
printed WITHOUT their delimiting quotes. All other s-exprs are
treated the same way as for PRINl.

Ex:
:(progn (qprinl "lisp is fun") (qprinl 24))
LISP IS FUN 24

3.7,7 (QPRINT (s))

QPRINT is identical to PRINT with the exception that string atoms
are printed without their delimiting quotes.

3,7 .8 (GETCHR)

GETCHR is similar to the Applesoft GET command. GETCHR waits for
a key press and returns an atom that corresponds to the pressed key.
If the key is a digit, a numeric atom is returned; otherwise, a string
atom is returned.

P-LISP Version 3.2 User's Manual

3.8 APPLE FUNCTIONS

3,8,l (CALL (na))
(PEEK (na))
(POKE (nal) (na2))

Page 3-16

These function are completely analogous to their Basic
counterparts. All arguments must be numeric atoms. CALL returns the
location being CALLed after returning from the call; PEEK returns the
contents of the PEEKed location; POKE returns the value being POK Ed.

It is not advisable to POKE anywhere between locations 2048
decimal (800 hex) and HIMEM, or anywhere on page zero except where
specified in the manual.

3.8.2 (HTAB (na))

HTAB' causes a horizontal tab to column (na). (na) is returned.

3.8.3 (VTAB (na))

VT AB causes a vertical tab to row (na). (na) is returned.

3.8.4 Graphics

P-LISP supports both hi-res and lo-res graphics. Please see
chapter 4 for full definitions of these functions.

3.8.5 (ONERR)
(ONERR (s))

ONERR is analogous to the ONERR statement in Applesoft. (ONERR
(s)) sets the error flag, so that if an error occurs during the
evaluation, the s-expr (s) will be evaluated and its value returned.
ONERR with no arguments resets the error flag so that normal error
messages will be printed. If ON ERR is active, the error code is
stored in location 222 before (s) is evaluated. ON ERR may also be used
to trap DOS errors, provided the error occurs during an evaluation.
See chapter on error messages for the correct codes.

_Ex:
: (on err 1 (that is wrong))
T

: (add 3)
(THAT IS WRONG)

:(onerr)
NIL

:(add 3)
ERROR: TOO FEW ARGS

P-LISP Version 3.2 User's Manual

3.9 FUNCTION DEFINITION, FLOW OF CONTROL

3. 9 .1 (DEFINE (<fen-name) (fen-clef>))

Page 3-17

DEFINE is used to define user functions, (fen-name) must be a
literal atom; (fen-def> should be anything LISP can evaluate (usually
a LAMB DA-expression), Neither (fen-name) nor (fen-def) are evaluated
before DEFINE is applied. DEFINE puts the property EXPR and the value
(fen-def) on the atom (fcn-name)'s property list. The value returned
by DEFINE is the function name.

Functions can also be defined by PUTting the property EXPR and
the function definition on the function name's property list.

Ex: To define the function CADR, which takes the CAR of the CDR
of its argument, then:

: (define (cadr (lambda (x)
(car (cdr x)))))

CADR

:(cadr '(apple sauce))
SAUCE

See below for details on Lambda-expressions,

3.9.2 (LAMBDA (L) (sl) (s2) ... (sn))

User-defined LISP functions are typically LAMBDA-expressions.
(L) is a list of the formal parameter to the function (possibly NIL).
Each formal parameter must be a literal atom and cannot be NIL. The
formal parameters correspond to the arguments that are to be supplied
to the function. Upon entrance into a LAMBDA-expression, LISP SETQs
the formal parameters to the values of the arguments, evaluates the
s-exprs (sl) through (sn), and resets the formal parameters back to
their previous values, returning the value of the last evaluated (si)
as the value of the function.

Ex: When we enter (CADR '(APPLE SAUCE)) for the example above,
the following sequence occurs:

1) X is SETQed to (APPLE SAUCE);
2) (CAR (CDR X)) is evaluated;
3) X is un-SETQed back to its previous value;
4) The atom SAUCE is returned as the value of the function.

P-LISP Version 3. 2 User's Manual Page 3-18

Note that LAMBDA-expressions can be applied directly without
first putting them in a function definition, i.e., we can type

:((lambda (x) (car (cdr x))) '(apple sauce))
SAUCE

with the same effect. Note the syntax for the above expression: the
LAMBDA-expression and the arguments must be the CAR and CDR
respectively of the s-expr. Of cour<se, it is more convenient to
define functions in, terms of LAMBDA expressions than to use this
method.

3.9.3 (FLAMBDA (L) (sl) (s2) ... (sn))

FLAMBDA is used for functions that should not evaluate their
arguments. The formal parameter list (L) must consist of a single
literal atom other than NIL. Upon entering an FLA MB DA, LISP puts the
CDR of the s-expr that invoked the FLAMBDA in an UNEVALUATED argument
list and SETQs the formal parameter in (L) to that list. Like LAMBDA,
the (si)'s are evaluated in succession, the formal parameter is
un-SETQed, and the value of the last evaluated (si) is returned.

Ex: If we don't want CADR in the example above to evaluate its
argument, we can define it as follows:

: (define (cadr (flambda (x)
(car (cdr x)))))

CADR

To apply CADR, we can type

: (cadr apple sauce)
SAUCE

Note that the following sequenc"' occurred:

1) X is SETQed to the unevaluated argument list, which is the
CDR of the s-expr that invoked CADR, in this case (APPLE SAUCE);
2) (CAR (CDR X)) is evaluated;
3) X is un-SETQed to its previous value;
4) The value SAUCE is returned.

Like LAMBDA, FLAMBDA can also be applied directly:

: ((flambda (x) (car (cdr x))) apple sauce)
SAUCE

P-LISP Version 3.2 User's Manual Page 3-19

FLAMBDA is also useful for functions that take an indeterminate
number of arguments. f.'or example, suppose you wanted a function that
added up an arbitrary list of numbers. First, define a function that
adds up a list of numbers:

: (define (add list (lambda (x)
(cond

)
:)))

((null x) 0)
(t (add (car x) (addlist (cdr x))))

You can now define a function that hands to A DDLIST a list of
numbers of arbitrary length,

: (define (add-em-up (flambda (x)
(addlist x)

:)))

Now, if you type in the s-expr

: (add-em-up 5 4 3 2 l)

you will get the result 15,

3.9.4 (COND (Ll) (L2) , .. (Ln))

COND evaluates the CAR of each (Li) until a non-NIL value is
reached; CON D then evaluates the remaining s-exprs in the (Li),
returning the value of the last s-expr as the value of the CON D. If
the CDR of the (Li) is NIL, COND returns the value of the CAR. If the
CAR of each (Li) evaluates to NIL, COND returns NIL. The elements of
each (Li) may be any s-expr that LISP can evaluate; it is perfectly
valid to embed a COND within a COND, a PROG within a COND, etc,

Ex:
:(cond ((and (null L) (atom z))

(htab 5)(print 'yes))
(t (print 'no)))

This will move to column 5 and print YES if the value of L is NIL
and the value of Z is an atom. Otherwise, NO will be printed and
returned.

If we envision the form of the COND as

(COND ((cl) (el))
((c2) (e2))

(<~n) (e~)))

P-LISP Version 3.2 User's Manual

then the evaluation of COND can be thought of as

IF (cl) THEN (el)
ELSE IF (c2) THEN (e2)

ELSE IF (en) THEN (en)
ELSE NIL

3,9.5 (PROG (L) (sl) (s2) . , , (sn))

Page 3-20

PROG is used primarily for iterative programming. (L) is a list
of literal atoms (possibly NIL) which are used as local atoms to the
PROG. NIL cannot be used as a local atom, These atoms are initially
SETQed to NIL. The (si)'s are evaluated in succession, with the value
of the last evaluated (si) returned as the value of the PROG, Any
(si) that is an atom is considered a label and is NOT evaluated. The
local atoms are un-SETQed to their previous values after exiting the
PROG. Numeric and string atoms should not be used as labels in a
PROG, since GO can only branch to literal atoms.

3,9.6 (RETURN (s)) •

RETURN is used to exit a PROG. RETURN evaluates its argument and
returns the value as the value of the PROG, Evaluation proceeds with
the first s-expr following the s-expr that invoked the PROG. The
RETURN may be used from any.where within the PROG, e.g., it may be
embedded in a COND (See example below),

3. 9, 7 (GO (a))

GO is used in a PROG as a GOTO. (a) must be a literal atom
and is not evaluated, When a GO is encountered in a PROG, evaluation
will proceed at the first s-expr following the first occurrence of the
label in the PROG. If the label is not in the immediately dominating
PROG, an error will result (it is not possible to branch out of a
PROG), Like RETURN, GO may be used from anywhere within the PROG.

Ex: This example uses the above functions to illustrate their
use, Assume that LISP was not supplied with a multiplication
function, We could write one using the PROG construct as follows:

: (define (mult (lambda (x y)
(prog (z result)

(setq z y result O)
loop
(cond ((zero z) (return result))

(t (setq result (add result x)
z (sub z 1))))

P-LISP Version 3.2 User's Manual

(go loop)))))
MULT

: (mult 4 5)
20

Page 3-21

In the above example, invoking MULT SETQs X to 4 and Y to 5.
Entering the PROG SETQs local atoms Z and RESULT to NIL, However, the
next s-expr SETQs Z to 5 and RESULT to O. Evaluation then loops,
adding Z to RESULT and decrementing Z by 1. When Z is 0, the PROG is
exited and the value of RESULT, 20, is returned.

GO and RETURN can also be used to re-start evaluation that has
been suspended (for example, by a ctrl-C), provided that the
suspension occurred from within a PROG. For example, suppose you
typed ctrl-C while the interpreter was evaluating (MULT 500 500),
which would take a while (using the M ULT function described above).
The interpreter would then enter break mode, with the input prompt a
1+1 • If you then typed

+(go loop)

the interpreter would re-enter the MULT function and continue
evaluating. Note that this can be dangerous: for example, if you hit
ctrl-C in the middle of the SETQ in the MULT loop above, after RESULT
was incremented but before Z was decremented, then re-entering the
function will produce an incorrect result.

You could also ha vc typed something like

+(return 12)

after entering break mode; in this case, the PROG will be exited
returning 12. Using RETURN from break mode can be useful while
debugging, for example, if you want to force a function to return a
specific value to another function.

3,9.8 (EVAL (s))

EV AL evaluates the value of its argument and returns the result.

Ex: If the value of A is B, then

: (eval 'a)
B

If the value of X is (A B), then

: (eval (cons 'car '(x)))
A

P-LISP Version 3.2 User's Manual Page 3-22

The argument is evaluated, CAR is CONSed onto (X), and the
resulting value, (CAR X) is evaluated by EVAL, returning A,

3.9.9 (APPLY <a) <L))

APPLY applies the function (a) to the list of arguments (L) and
returns the result. Note that (a) treats the elements of <L) as
though they are quoted.

Ex:
(apply 'cons '(a (b)))
(AB)

(apply 'mult 1(3 34))
102

:'(apply 'cone '((a) (one) (anda) (two)))
(A ONE ANDA TWO)

3.9.10 (MAPCAR <a) (L))
(MAPCAR (a) (Ll) (L2))

MAPCAR applies·the function (a) to each element of list (L) (or
each pair of arguments from the lists (Ll) and (L2)) and returns a
list of the results after the function has been applied to all the
list elements, MAPCA R should only be used with functions that take
one or two arguments. Note that MAPCAR behaves like APPLY in that the
arguments to (a) are treated as though they are quoted.

Ex:
: (mapcar 'length '(nil (a) (b c) (d e f)))

(0 1 2 3)

: (ma pear 'cons '(a b) 1 ((c) (d)))
((AC) (B D))

:(mapcar 'atom 1(3 (a) b 14 (d c) "qwerty"))
(T NIL TT NIL T)

3.9,11 (PROGN <sl) (s2) ... (sn))

PROGN evaluates each (si) in succession and returns the value of
the last evaluated (si).

Ex:
:(progn (setq z '(hello)) (print 'done))
DONE

and Z is set to (HELLO).

P-LISP Version 3,2 User's Manual

3.10 OBJECT LIST FUNCTIONS

3.10.l (OBLIST)

Page 3-23

OBLIST returns the current object list, i.e., the list of all the
currently active atoms.

3,10.2 (REMOB (s))

REMOB removes atoms from the object list. Typically, REM OB is
necessary to free space that would be wasted otherwise by useless
atoms. (s) must evaluate to the literal atom to be REMOBed, WARNING:
if you REMOB an atom that is referenced by other s-exprs, or if you
REMOB an important atom like T or NIL, the results will be disastrous.
USE THIS FUNCTION WITH CARE!

Ex:
:(remob (car '(peach pie)))

will remove the atom PEACH from the object list. The space occupied
by PEACH will now be reused after the next garbage collection.

3.11 DEBUGGING AIDS

3.11.l (TRACE (al) (a2) ... (an))

TRACE is used to turn trace on for particular functions. The
(ai) are NOT evaluated and should be the names of the functions to be
traced (both SUB Rs and EXP Rs can be traced), Attempting to trace a
non-existent function has no effect. A maximum of IO functions can be
traced at any one time; attempting to trace above this limit has no
effect and does not produce an error message. TRACE with no arguments
also has no effect.

TRACE is normally used for debugging purposes. When a function
is traced, the interpreter will print the list of (evaluated)
arguments to the functions when it is invoked, and the value returned
by the function after evaluation. TRACE returns T.

Ex: To turn trace on for CONS,

: (trace cons)
T

:(cons 1a '(b))

-))CONS .. (A (B))
<(-CONS .. (A B)

(AB)

P-LISP Version 3.2 User's Manual Page 3-24

The -» arrow indicates the function is being entered, with the
list of (evaluated) arguments following the : : . The «- arrow
indicates the function is being exited, with the s-expr following the
.. being the value returned.

Higher-level functions are always traced before lower-level
functions. This means that if, for example, we are tracing both CAR
and CONS, then

: (car (cons 1a 1(b)))

-))CAR:: ((AB))
->)CONS:: (A (B))
((-CONS:: (AB)
«-CAR : : A

CAR is traced before CONS despite the fact that CONS is evaluated
first. In fact, the CONS s-expr is PValuated twice: once for the
trace of CAR, and then again for the trace of CONS.

NOTE: Never trace any function unless it evaluates its
arguments. In other words never trace functions such as GO,
SETQ, TRACE, COND and PROC.

3.11.2 (UNTRACE (al) (a2) , .. (an))

UNTRACE turns trace off for the functions supplied in the
argument list. UNTRACE with .no arguments turns trace off for all
traced functions. Untracing a function that is not being traced has
no effect. Like TRACE, the (ai) are not evaluated, UNTRACE returns
NIL.

Ex: To turn trace off for CONS,

: (untrace cons)
NIL

3.11.3 (BREAK (S))

BREAK is used for setting breakpoints in a function. The (s) is
an optional (unevaluated) s-expr that is used to labe_l the breakpoint.
When a BREAK is encountered, a break message and the (s) if one is
supplied, is printed, and the intcrp .. cter enters break mode, The user
may then examine local atom bindings or execute any other LISP
command, as in normal break mode. Execution of the BREA Ked function
may be resumed at the point after the BREAK by typing GO.

P-LISP Version 3.2 User's Manual

Ex: Suppose we have the following function:

(TEST (LAMBDA (X)
(PROG (Z)

We type:

(PRINT '(A TEST FOR BREAK))
(BREAK HERE)
(PRINT '(THAT WAS FUN))

:(test 1thisatom)

and P-Lisp responds

(A TEST FOR BREAK)
))BRK: HERE
+

We can now examine a tom bindings, for example,

+x
THISATOM

+z
NIL

To resume execution, we type,

+go
(THAT WAS FUN)
NIL

Page 3-25

The atom BREAK is used as a switch to enable or disable
breakpoints. By default, BREAK is SETQed to T, which enables all
breakpoints. To disable breakpoints, SETQ the atom BREAK to NIL; all
breakpoints will then be ignored. SETQing BREAK to T (or any other
non-NIL value) will re-enable the breakpoints,

Remember that ctrl-C is NOT the same as a BREAK, even though both
put you in break mode. Specifically, you cannot resume evaluation
after a ctrl-C by typing GO; you can only do so after a BREAK.

3.12 GARBAGE COLLECTION

3,12,l (GC (s))

This form of the GC function is used to enable or disable the
garbage collection message that appears whenever the GC is invoked.
If <s) is NIL, the message is disabled; otherwise, the message is
enabled. This command has no other effect.

P-LISP Version 3.2 User's Manual Page 3-26

3.12.2 (GC)

GC with no arguments invokes the Garbage Collector. This is a
convenient way of determining how much free memory is available. GC
will return the number of cells collected during the garbage
collection.

3,13 LOADING AND SAVING WORKSPACES

P-LISP workspaces are saved to and loaded from disk via the DOS
commands SAVE and LOAD. The syntax for these commands is the same as
that described in the DOS Reference Manual. Be aware that P-LISP
makes patches to DOS to re-define the SAVE and LOAD commands; thus,
you should reboot DOS after exiting P-LISP.

For exall)ple, to save a workspace on the disk in drive 2 with the
name TEST!, simply type

:save testl ,d2

The workspace will be saved and T will be returned. To reload
the workspace, type

:load testl,d2

The workspace TES Tl will then be reloaded. As you would expect,
LOADing a workspace overwrites the contents of the current workspace,

Workspaces are saved on disk with the special filetype S, The
file containing the workspace actually consists of a "core dump" of
the workspace in RAM. Only the memory pages marked as 11free 11 in the
workspace memory map (see Chapter 7) are saved in the file. A copy of
the memory map is also saved in the file and reloaded when the file is
LOADed.

Note that if, for some reason, you have modified the property
lists of the P-LISP SUBRS, you will have to save a separate copy of
the interpreter as well, You will then have to use this interpreter
in conjunction with the workspace. Normally there is no reason to
ever touch the p-lists of the SUB Rs, so you should be able to ignore
this note for almost all cases.

Functions can also be saved in text file format. WRITEFCN and
APPENDFCN, in conjunction with the pretty-printer, can be used to
write function definitions to a text file (see Chapter 4). Function
definitions (or, in fact, any s-exprs) can be loaded from a text file
by simply EXECing the file; the contents of the file are added to your
current workspace.

P-LISP Version 3.2 User's Manual Page 3-27

It is generally a good idea to save your workspace often when you
are developing functions. Because functions and data share the same
environment, a simple mistake can be especially volatile, Any number
of errors can destroy your workspace, probably the worst being a
RECURSION CHECK during a garbage collection. SAVE does not take
particularly long and is well worth the wait.

(If you feel like you're in a destructive mood, here's an easy
way to wipe out your workspace: sirnply type

: (rplaca L L)

for some list L and then invoke the garbage collector.)

P-LISP Version 3.2 User's Manual Page 4-1

Chapter 4 - Graphics, File 1/0, and Mathematical Functions

4.1 LORES Graphics functions (see Apple BASIC manuals for details
on these functions)

4.1.1 (GR)

GR takes no arguments. GR puts the Apple in LORES graphics mode
(with four lines of,text at the bottom) and returns NIL.

4.1.2 (TEXT)

TEXT returns the Apple from graphics to text mode. TEXT returns
T.

4.1.3 (COLOR (na))

COLOR sets the color for following PLOTs. (na) must be a numeric
atom between 0 and 15 inclusive. COLOR returns (na).

Ex:
: (color 15)
15

sets all succeeding plots to color 15 (white).

4.1.4 (PLOT (nal) (na2))

PLOT plots a small square on the screen at location row (na2),
column (nal). The color of the square will be whatever was set by the
most recent COLOR command. The arguments must be numeric atoms
between O and 39 inclusive. PLOT returns T. Note that PLOT does NOT
check to make sure that the arguments are valid square coordinates.

Ex:
: (plot 4 7)

T

plots a square at row 7, column 4.

4.2 HIRES Graphics

You should be familiar with hires graphics as explained in the
Applesoft reference manual before using these functions. You must
protect the hires display in the memory map before using these
functions. The workspace HILBERT on the P-LISP Master disk contains a
memory map configured for hires graphics (it does NOT make use of
language card RAM).

P-LISP Version 3.2 User's Manual Page 4-2

4.2.1 (HGR2)

HGR2 puts the Apple in hires graphics mode (display page 2).

4.2.2 (HCOLOR (na))

HCOLOR sets the plotting color to (na). (na) must be between 0
and 7 inclusive.

4.2.3 (HPLOT (nal) (na2))

HPLOT plots a hires point at column (nal), row (na2). P-LISP
does not check to make sure these coordinates are in bounds.

4.2.4 (HTO (nal) (na2))

HTO draws a line from the most recently plotted point to (nal),
(na2). The color used is the most recently plotted color, regardless
of the setting of HCOLOR.

4.2.5 (DRAW (na))

DRAW draws the (na)th shape in the shape table, starting at the
most recently plotted point. The address of the shape table should be
in page O locations 232 and 233 ($E8-$E9 hex). The shape table should
reside in a protected area of memory. The default scale and rotation
factors are 1 and O respectively, The scale factor may be changed by
POKEing the desired value into location 231 ($E7 hex). The rotation
factor may be changed by POKEing the desired value into location 249
($F9 hex).

4.2.6 (XDRAW (na))

X DRAW is the same as DRAW, except that the color of each dot
drawn is complemented.

4, 3 File 1/0 Functions

The file FILEIO. TEXT on the P-LlSP Master disk contains the
functions described below. The functions can be loaded by EXECing the
file into your workspace.

Note that if you wish to use the functions WRlTEFCN or APPENDFCN
to write function definitions to a text file, you should also have the
pretty-printer loaded, The pretty-printer is stored in the file
PPRINTER,TEXT on the Master disk.

In the function descriptions below, atoms representing file names
can be either literal or string atoms.

P-LISP Version 3,Z User's Manual Page 4-3

4,3,1 (OPENSEQ (a))

This function opens a sequential text file with filename (a),

Ex:
: (open seq "tmpl ,d2")

opens text file TMPI on the disk in drive 2,

4.3.2 (APPENDSEQ (a))

This function works the same as OPEN SEQ, except that subsequent
output is appended to the end of the file.

4,3,3 (WRITESEQ (a))

This function sends a WRITE command to DOS for sequential file
(a), Subsequent LISP PRINT statements will send output to file (a),

4, 3, 4 (REA DSEQ (a))

This function sends a READ command to DOS. A subsequent LISP
READ statement will get the next line of input from file (a),

4, 3, 5 (CLOSE FILE (a))

This function closes file (a),

4.3.6 (CLOSE)

This function close al) open files,

4,3,7 (OPENRND (a) (na))

This function opens a random access file with filename (a), (na)
is the record length of the file,

Ex:
: (openrnd 'sesame 20)

opens random access file SESAME with record length 20,

4,3.8 (WRITERND (a) (na))

This function sends a random access WRITE command to DOS. (na)
is the record number to be written to. Subsequent LISP PRINT
statements will send output to record (na) of file (a).

P-LISP Version 3.2 User's Manual Page 4-4

4.3.9 (READRND <a) <na))

This function sends a random access READ command to DOS. <na) is
the record number to be read from. Subsequent LISP READ statements
will read from record <na) of file <a).

The following example will illustrate how to use some of the
above functions.

: (progn ,

:)

(openrnd "meow" 30)
(writernd "meow" 14)
(qprint "this is a test")
(close "meow")

The above s-expr opens random file MEOW with record length 30,
then writes the string "THIS IS A TEST" (without quotes) to record
number 14. The following s-expr,

:(progn

:)

(openrnd "meow" 30)
(readrnd "meow" 14)
(setq x (readline))
(close)

will open file MEOW, and read record 14, SETQing the atom X to the
list (THIS IS A TEST).

4.3.10 (WRITEFCN <a) <s))

This function may be used to store function definitions in a text
file, YOU MUST HAVE THE PRETTY PRINTER IN YOUR WORKSPACE TO USE THIS
FUNCTION! (a) must be the name of the file in which the functions
will be stored. (s) may be either the name of a single function or a
list of functions to be saved (see examples). For each function in
the list, WRITEFCN writes the function definition to the text file.
The functions may be reloaded from the file by EXECing the file.

Ex:
:(writefcn 'work 'apple)

writes the function APPLE to the file WORK.

: (write fen 'work '(peach plum pear))

writes the three functions PEACH, PLUM, and PEAR to the file
WORK.

P-LISP Version 3.2 User's Manual Page 4-5

4.3.11 (APPENDFCN (a) (s))

This function works the same '""Y as WRITEFCN except the functions
are appended to the end of the file.

4.4 MATHEMATICAL FUNCTIONS

Supplied on the P-LISP master disk are the files which provide
P-LISP the ability to access Applcsoft's intrinsic math functions.
The functions are listed below, with the appropriate syntax: you
should consult the Applesoft reference manual for more details.

(SIN (na)) - sine
(COS (na)) - cosine
(TAN (na)) - tangent
(ATN (na)) - arctangent
(LOG (na)) - natural logarithm
(EXP (na)) - exponential
(RND (na)) - pseudo-random number
(SQRT (na)) - square root

To utilize the above functions, you should do the following:

l) Deallocate page $6000 (bit 7 of byte $81 F in the memory map).
See Chapter 6 for details on memory allocation.

2) Type 800G to restart P-LISP (remember that you must restart
the interpreter after modifying the memory map).

3) From P-LISP, type BLOAD TRIG.CODE to load the machine language
code for the functions.

4) Type EXEC TRIG. TEXT to load the LISP code for the functions.

5) The math functions are now available, Note that if you SAVE
your workspace, the machine code for the functions is NOT saved
as part of the workspace.

P-LISP Version 3.2 User's Manual Page 5-1

Chapter 5 - Error Messages

A LISP error occurs whenever the interpreter encounters a s-expr
which, for some reason, it can not evaluate, This will typically
result from giving a function the wrong number of arguments or the
wrong types of arguments. When an error occurs, the interpreter will
print an error message describing the error, followed by the name of
the function being evaluated and the contents of the argument list at
the time of the evaluation (this assumes that ONERR is not active).
For example, attempting a CONS with too many arguments will cause the
following:

:(cons 'this '(that) '(those))
**ERROR: TOO MANY ARGS **
GONS :: ((QUOTE THIS) (QUOTE (THAT)) (QUOTE (THOSE)))

•• Attempting an ADD with non-numeric arguments will give the
following error:

: (add 3 nil)
** ERROR: BAD NUMERIC ARG **
ADD : : (3 NIL)

A summary of the P-LISP error messages appears below,

When an error occurs, the interpreter enters a special evaluation
mode called "break" mode, (The interpeter will also enter this'mode
as the result of a ctrl-C, a BREAK, or a RESET). In this mode, it is
possible to examine the current local environment (if any). If break
mode was entered as the result of a BREAK, then typing GO will resume
evaluation (GO will NOT be effective if break mode was entered as the
result of an error) ,

The input prompt in break mode is the plus sign '+', To return
back to normal LISP mode, simply type () or NIL. The normal input
prompt ': 1 will reappear, and the environment stack will be cleared.

For example, if you have defined the following function:

: (define (a (lambda (x)
(cons x))))

and then type

:(a 19.7)

you will get

•• ERROR: TOO FEW ARGUMENTS **
CONS : : (X)

P-LISP Version 3.2 User's Manual

You can then examine the current binding for X:

+x
19.7

If you now type

+()
NIL

Page 5-2

you get the input prompt 1
:

1
• The environment stack has been

cleared, so if you now . type

:x

you will get

•• ERROR: UNDEFINED ATOM **
EVAL :: X

5.1 NUMERIC OVERFLOW (ONERR code 17)

A numeric atom greater than the maximum number the computer could
handle was entered from the keyboard or calulated in an evaluation.

5,2 TOO FEW ARGS (ONERR code 22)

A function was invoked and· not enough arguments were supplied,

5.3 TOO MANY ARGS (ONERR code 21)

A function was invoked and too many arguments were supplied.

5.4 BAD ATOMIC ARG (ONERR code 20)

A function was expecting an atom, and something else was
supplied. This error will a.lso occur when a function is expecting a
literal atom and a numeric atom is supplied (e.g., SETQ).

5.5 BAD LIST ARG (ONERR code 24)

A function was expecting a list, and something else was supplied.
This error will also occur if a list is supplied to a function with
illegal elements, for example, trying to define a function with a
numeric atom as the function name.

P-LISP Version 3.2 User's Manual Page 5-3

5.6 BAD NUMERIC ARG (ONERR code 23)

A function was expecting a numeric atom, and something else was
supplied. This error will also occur if a function is expecting an
integer (e.g. CALL) and a floating-point atom is supplied.

5.7 RECURSION CHECK (ONERR code 18)

This error will, occur if you have recursive functions that
overflow the recursion stack, or if a s-expr with a very deep nesting
level is encountered during garbage collection, or if garbage
collection occurs during deep recursion. If this error occurs, you
may have to adjust the amount of space allocated to the recursion
stack (see Chapter 7). Be aware that, if this error occurs in the
middle of a garbage collection, the contents of your workspace will in
all· likelihood be lost.

5.8 NO DOMINATING PROG (ONERR code 25)

A GO or RETURN was attempte-:i, and there was no dominating PROG to
return from or branch in.

5.9 MISSING LABEL , (ONERR code 26)

A GO was attempted to a non-existent label.

5.10 UNDEFINED ATOM (ONERR code 19)

An attempt was made to evaluate an atom that has no value. This
will also occur if an attempt is made to evaluate a non-existent
function.

5.11 NO SPACE (ONERR code 27)

The Garbage Collector was unable to collect any free space. The
problem may alleviate itself after this error occurs, depending on
what was going on at the time. Otherwise, the object list may be too
crowded, or there might be extremely long lists floating around.
REM OB may be able to remedy this situation.

P-LISP Version 3.2 User's Manual Page 6-1

CHAPTER 6 -- FUNCTION EDITOR & PRETTY PRINTER

The P-LISP interpreter is supplied with a function editor and
pretty-printer, both written in LISP. The editor provides an easy way
to modify function definitions without having to retype them entirely
and without having to leave the LIS!" environment. The pretty-printer
prints the function definitions on the output device in an
easy-to-read format.

The editor is supplied in text file format in the file ED. TEXT.
The pretty-printer resides in the text file PPRINTER. TEXT. You can
load the editor and pretty-printer into your workspace by EXECing them
in. (Note: you do not need to have the pretty-printer loaded in
order to use the editor. However, if you wish to use them both, you
must EXEC the editor BEFORE EXECing the pretty-printer).

Both the editor and pretty-printer are also supplied in a
workspace format (file type S) file named EDITOR. To load this
workspace, simply type LOAD EDITOR. Be aware that this workspace is
configured with the default memory map. If you are creating a new
workspace and wish to use the default map, you should LOAD this file
before you begin; that way you will always have the editor available
while you develop your functions (you can REMOB the editor functions
from your workspace when you are finished to make extra memory
available). If you wish to create a workspace with a different memory
map, and wish to have the editor present, you must modify the map (see
Chapter 7) and then EXEC the editor files into your new workspace.

To edit a function, type (ED (fen)), where (fen) is the name of
the function to be edited. The editor responds by typing:

TOP: (LAMBDA & &)

The (LAMBDA & &) is called your Point-of-View (POV), and the TOP:
is your level indicator. There are any number of commands that you
can give that will allow movement through your function to edit it.
You will note that your POV is displayed in a compressed format. This
is to allow rapid and easy manipulation of long and complicated lists.
If you view the function as a tree, the Lambda and the two &'s are
nodes. Any node which is represented by an & is a list, while atoms
are explicitly spelled out (as in LAMBDA) If you wish to take a look
at a particular node, you may move to it, by saying 3 (to move to node
three). The editor will respond with a new point of view which might
look something like:

TOP: 3: (COND & & &)

This would tell you that you were looking at a COND statement,
with 3 items below it, If you wish to see a full printout of the
current POV, type P (for pretty-print), and the entire expanded POV is
printed out.

P-LISP Version 3.2 User's Manual Page 6-2

The table below summarizes all the possible commands to the .
editor: (# means any number)

Move to son # (i.e. if # is 3, move to the
third element in the POV.

-# Work from the reverse. If you type a -2, and
the length of the POV is 7, this will move
you to the 5th position of the POV.

0 Cancel the last level you are working on and
move to the father of the tree.

NX Moves you to the next level. In other words,
if your POV is (3 2 2 l), this will move you
to (3 2 2 2) if possible. If you would end
up on an atom, it will skip it. If you
would fall off the edge, it will not allow
you to go.

BK Analagous to N X, but mov 0 s you backwards. If
you are at 3 2 2 2, you would go to 3 2 2 1

GO

EXIT

ABORT

if possible.

(new pov) This command lets you set a new POV.
The new POV must be legimitate (it must point
to a list) and should be supplied as a list
of numeric atoms. If a null list is supplied,
e.g. GO (), the POV will be set to the TOP
of the function.

Normal exit, puts modified function into your
workspace.

Aborts this edit, does not save function.

(sexpr) F/A/B # This is the insert/replace
command, Any valid (sexpr) can be inserted
anywhere in the function. If you use the F
option, this stands for FOR, and means replace
whatever was at # with (sexpr). If you use the
A option, this means to insert (sexpr) AFTER
whatever is at #. If you use the B option,
insert (sexpr) BEFORE whatever is at #. The
example below should clarify these options.

D # Deletes whatever was at #.

P Pretty-print the entire POV. This requires
that the pretty-printer be resident; otherwise,
the POV will be printed in normal list form.

P-LISP Version 3 .2 User 1s Manual Page 6-3

DP # Delete the pair of parentheses around the
s-expr at #. The command has no effect if
the s-expr is an atom.

IP #1 #2 This command inserts a pair of
parentheses around the #1th and #2th
s-expr in the POV.

Working through an example is the best way to see how the editor
works. Suppose we have the following definition for REVERSE:

are
the
the

(REVERSE (LAMBDA ((L))
(CIND

((NULL L) A NIL)
((APPEND (REVERSE CDR L) (CARL)))

We want to make the following changes:

Delete the extra pair of parens around the formal argument L.
Change the CIND to a COND.
Delete the A ·before the NIL.
Insert a T before the APPEND s-expr.
Insert a pair of parentheses around the CDR L.

Here's how we'd make the changes.
preceded by a semicolon. User input
computer response is in UPPER case.
editor:

: (ed reverse)

Comments in the dialogue below
is typed in lower case, and
First we start by invoking

; the editor responds with a top-level POV
TOP: (LAMBDA & &)

?p
; Let's first pretty-print the function.
; Note that it won't be particularly pretty because of
; the mess the function is in.
(LAMBDA ((L))

(CIND ((NULL L) A NIL) ((APPEND
REVERSE CDR L)(CAR L))))

TOP: (LAMBDA & &)

P-LISP Version 3.2 User's Manual Page 6-4

;first we want to get rid of the extra parens around the L.

?2
TOP:2: (&)

;let's print this to make sure it's what we want.

?p
((L))

TOP:2: (&)

;ok delete the parens

?dp l
TOP:2: (L)

;we want to edit the next s-expr. NX will take us there.

?nx
TOP:3: (CIND & &)

;first change the CIND to a COND. INSERT FOR will do this.

?i cond f I
TOP:3: (COND & &)

; now to get rid of the A.

?2
TOP:3:2 (& A NIL)

; DELETE will do the job for us.

?d 2
TOP:3:2 (& NIL)

;lets print it to make sure it's what we want.

?p
((NULL L) NIL)

TOP:3:2 (& NIL)

;let's do a NX to get to the next s-expr,

?nx
TOP:3:3 (&)

;(note we could also have gnttc11 here by tn.•ioog O to get to the
;COND s-expr and ttwn a 3).
;This doesn't tell much, so let',; pi-int it.

P-LISP Version 3.2 User's Manual Page 6-5

?p
((APPEND (REVERSE CDR L) (CAR L)))

TOP:3:3 (&)
; first we want to make T the first s-expr of this list. we can do
;that with an INSERT BEFORE.

?i t b 1
TOP:3:3 (T &~

; the last thing to do is surroun<l the CDR L with a pair of
; parens, We have to go there first.

?2
TOP:3:3:2 (APPEND & &)

?2
TOP:3:3:2:2 (REVERSE CDR L)

;let's use the INSERT PARENS (IP) command,

?ip 2 3
TOP:3:3:2:2 (REVERSE &)

;and make sure it's right

?p
(REVERSE (CDR L))

TOP:3:3:2:2 (REVERSE &)

;let's go back to the top and pretty-print the function to see
; the results of our efforts.

?go()
TOP: (LAMBDA & &)

?p
(LAMBDA (L)

(COND
((NULL L)

NIL
)
(T

(APPEND (REVERSE (CDR L)) (CAR
L))

TOP: (LAMBDA & &)

P-LISP Version 3,2 User's Manual

;looks good. Save the function by typing EXIT.

?exit

(LAMBDA (L) (COND ((NULL L) NIL) (T (
APPEND (REVERSE (CDR L)) (CARL)))))

We can now try it out.

:(reverse '(ab c de))
(ED CB A)

A job well done.

THE PRETTY-PRINTER

Page 6-6

You can invoke the pretty-printer from outside the editor by
simply typing (PPRINT (fen)), where (fen) is the name of the function
to be printed, Remember that, by ·default, P-LISP formats output for a
40-column display. To change this, you should POKE the desired column
width into page zero·location 240 ($F0 hex). If you are using a
printer, you must do this in addition to whatever control sequence is
necessary to get the printer to print more than 40 columns.

P-LISP Version 3.2 User's Manual Page 7-1

CHAPTER 7 -- MEMORY MANAGEMENT

The memory allocation scheme implemented in P-Lisp allows the
user to select the size and location of the recursion stack, to
protect certain areas of memory from P-Lisp (e.g. the Hires display
area), and to take advantage of extra RAM provided on the language
card. The following instructions explain how to configure the
interpreter's memory to suit your needs. Follow the instructions
carefully, and be -sure to double-check everything before saving the
map on disk, To be safe, you should always work with a copy of the
interpreter, never the master,

Note that the memory map is an integral part of a workspace,
Once a workspace has a given memory map, the map cannot be changed for
that workspace. The map is saved as part· of the workspace on disk;
once the map is modified, you must tell the interpreter about it by
restarting P-LISP, which always results in clearing the workspace,

If you wish to create a workspace with a memory map different
from the default map, you should follow the following procedure:

1) Enter the monitor via CALL -151. You should have a copy of
the interpreter loaded (if you are already in LISP, you do not
have to reload the interpreter; just type (CALL -151)),

2) Make the appropriate changes to the map.

3) Type 800G to restart the interpreter. You MUST do this in
order to tell the interpreter about the changes you just made,

4) You can now create your new functions, EXEC them from a text
file, or whatever. When you SA VE your workspace, a copy of the
map is saved with it, so when you reload the workspace,
everything will be as you left it when you did the SAVE.

If you wish, you can modify the map and make the new map a
permanent part of the interpreter, so that every time you BRUN
LISP you get the new map. To do this, simply BLOA D the
interpreter, enter the monitor to make your changes, then type
BSA VE LISP, A$800, L$3300 to save a new copy of the interpreter,
To be safe, be sure you do not overwrite your only copy of the
interpreter: ALWAYS USE A BACKUP COPY.

The default memory map is as follows:

Recursion stack: $3B00-3FFF,
Workspace: $4000-95FF,

.

P::-LISP Version 3.2 User's Manual Page 7-2

The rest of memory is protected, If you have an Apple IIE,
or an Apple II+ with a language card, you may want to run the
CONVERT program supplied on the P-LISP Master disk. This changes
the default workspace to $4000-95FF, $D000-$FFFF, Chapter 1
describes how to do this (you should NOT run CONVERT if you are
running an Apple II with Applesoft on a language card!)

1) Setting the Recursion Stack

The default recursion stack provides roughly 124
recursion /nesting levels, The stack can be increased or
decreased as desired, or moved to another section of memory, The
start and end addresses of the stack are stored in locations
$80D-80E and $80F-810 respectively, low-order byte first, Keep
in mind the following restrictions when changing the recursion
stack:

a) The end address should always be greater than the start
address (naturally),

b) The start address should• NEVER be less than $3B00, Otherwise
the stack will overwrite the interpreter, making things very ugly
and unpleasant .

• - c) The stack should not overlap the workspace area (see below).

d) You must have at least 1 ., .. ce (256 bytes) of stack for P-LISP
to work.

e) Only the
boundary.
stack, you
•• $3DFF.

high order byte is significant for the end-of-stack
Thus, for example, to allocate $3B00-$3DFF to the

should set the end-of-stack boundary to $3E00, ** NOT

2) Protecting the hires display area,

You should never use hires graphics unless the hires display area
is protected, To do this, store a zero in locations 81B through 81E.
If you wish to free the hires area, store an FF in each of these
locations,

3) Setting the Workspace Area

The memory map allows the user to protect any page in the free
space area from being used by P-LISP, By default, the free space area
is locations 4000-95FF, Each page is represented by a bit in the map;
if the bit is 1, the page is free for use; if the bit is a 0, the page
is protected. Thus, pages can be protected for hires graphics,· shape
tables, or any other desired use.

P-LISP Version 3 .z User's Manual Page 7-3

To protect a page in the map, the page's corresponding bit
should be st to O; to allocate the page, the bit should be set to 1.
The table on page 7-3 indicates the map locations for each page (the
table entries are the pages addresses). The X'd locations are those
that should NEVER be changed. See the example below for more details.

To change the memory allocation to the workspace area, do the
following:

1) Set the appropriate bits in the memory map.

2) If you change the starting page of the workspace, you must
indicate this in the map by storing the address of the first page
in locations $811-812, low-orcl~r byte first.

Be aware of the following restrictions:

a) Do not allocate the language card areas unless you intend
to use a language card.

b) Do not change any of the bytes that do not appear in the
table.

c) The free space area and recursion stack should not overlap.

Addresses:

BOD: Start of stack
BOF': End of stack
811: Start of workspace

P-LISP Version 3.2 User's Manual Page 7-4

Workspace map:

BYTE BIT#
ADDRESS

7 6 5 4 3 2 1 0
81A X X X)BOO 3COO 3D00 3EOO 3FOO
818 4000 4100 4200 4300 4400 4500 4600 4700
81C 4800 4900 4AOO 4BOO 4COO 4DOO 4EOO 4FOO
81D 5000 5100 5200 5300 5400 5500 5600 5700
81E 5800 5900 5AOO 5BOO 5COO 5DOO 5EOO 5FOO
BlF 6000 6100 6200 6300 6400 6500 6600 6700
820 6800 6900 6AOO 6BOO 6COO 6DOO 6EOO 6FOO
821 7000 7100 7200 7300 7400 7500 7600 7700
822 7800 7900 7AOO 7800 7COO 7DOO 7EOO 7FOO
823 8000 8100 8200 8300 8400 8500 8600 8700
824 8800 8900 8AOO 8BOO 8COO 8DOO 8EOO 8FOO
·825 9000 9100 9200 9300 9400 9500 X X
82D DOOO DlOO D200 D300 D400 D500 D600 D700
82E D800 D900 DAOO DBOO DCOO DDOO DEOO DFOO
82F EOOO ElOO E200 E300 E400 E500 D600 E700
830 E800 E900 EAOO EBOQ ECOO EDOO EEOO EFOO
831 FOOO FlOO F200 F300 F400 F500 F600 F700
832 FBOO F900 FAOO FBOO FCOO FDOO FEOO FFOO

P-LISP Version 3.Z User's Manual Page 7-5

Apple II with language card users: if you wish to allocate the
language card RAM, you may only use locations $O000-DFFF, as the
remainder of the card must be occupied by Applesoft. Apple II+ or IIE
owners may allocate the entire language card area.

Example: Suppose I only need a small (2-page) stack, I want to
use hires graphics, and I want to allocate the remainder of memory to
the workspace. Suppose further that I am starting with a default
workspace as described above.

First, I load the interpreter and enter the monitor. I want the
stack to range from $3B00-3CFF, so I have to change the ending address
of the stack:

*SOF: 00 30

I want the area normally used· by the stack ($3O00-3FFF) to be
made part of my workspace. To do this, I type

*SIA: E7

(The three high-order bits of byte 81A must ALWAYS be set, hence the E
in the first half of the byte. The 7 iri the second half allocates
pages $3000, 3E00, and 3F00 to the workspace.)

Since I changed the starting location of the workspace, I must
also type the following:

*811: 00 30

Now I want to protect the hires display area:

*SIB: 00 00 00 00

Finally, I want to allocate the language card RAM:

*820: FF FF FF FF FF FF

If I dump the map on the monitor (by typing 800. 832). I should
see the following:

800 - 00 3B 00
810 -
818
820
828
830

30 00 30 80 00 00 00 00
00 7F E7 00 00 00 00 FF
FF FF FF FF FF FC 00 00
00 00 00 00 00 FF FF FF
FF FF FF

NOTE: Due to bank switching methods used by Apple to access
the language card, it is possible that the Apple will "hang"
if an I/0 error occurs during a LOAD or SAVE.

P-LISP Version 3.2 User's Manual Page 7-6

I can now type 800G to start the interpreter with the
newly-configured workspace. If i'm going to use this map several
times for different workspaces, I should immediately SAVE the
workspace to create a permanent copy of the map on disk. I could also
save the map with the interpreter by BSAVEing the interpreter,
although I should do this BEFORE typing 800G.

Another example: Suppose I want to put the recursion stack on
the language card and allocate everything else to the workspace. To
do this, I do the following:

First, load the interpreter and enter the monitor. To put the
stack on the language card, I type:

80D: 00 DO
B0F: 00 00

(Recall that only the hi-order byte is significant. So, If I want to
set the stack to range from $D000-FFFF, I have to set the end address
to $0000).

Now I allocate the memory normally used by the stack to the
workspace:

81A: FF

and I adjust the start-of-workspace address:

811: 00.3B

I have to make sure the stack area is protected:

82D: 00 00 00 00 00 00

should now type 800G to start the interpreter. I can then SA VE
the workspace to keep a permanent copy of this map.

P-LISP Version 3.2 User's Manual Page 8-1

CHAPTER 8 -- MACHINE LANGUAGE INTERFACE

After obtaining some experience with LISP programming, you may
wish to implement some functions, particularly those that are c_alled
frequently, in machine language, This chapter will provide some of
the information necessary for interfacing P-LISP with machine language
subroutines, Be aware that you should use this information at your
own risk. All entry points apply to version 3. 2 of the interpreter
(these entry points_ are NOT valid for earlier versions).

All of the P-LISP workspace is divided into 4-byte "cells". The
first two bytes are the CAR of the cell, and the last two bytes are
the cell's CDR. The CAR and CDR of a cell typically contain pointers
(addresses) to other cells. Cells are aligned on 4-byte boundaries,
so the 2 low-order bits of a cell's address are O. Pointers to atoms
have bit 1 set to indicate the pointer is atomic, so for example, an
atom that lives at hex location $4000 would be referenced in a cell as
$4002. Bit O of a cell is used to mark active cells during garbage
collection.

Atoms are stored with the following formats. They are divided
into four types: literal, numeric-integer, numeric-floating point,
and string.

1) Literal A tom
Cell l:

CAR: pointer to value (0 if no value)
CDR: pointer to cell 2

Cell 2:
CAR: pointer to print-name cell
CDR: pointer to property list

Print-name cell:
CAR: 1st 2 characters of print-name
CDR: pointer to next print-name cell

Property list:
The property list is stored like any other list, as a chain of cells,
with the CAR of each cell pointin~ to a list element, and the CDR
pointing to the next cell in the chain. Lists are terminated with a
NIL in the CDR ($0072).

2) Numeric-integer
Cell 1:

CAR: pointer to cell 2
CDR: NIL

Cell 2:
CAR: 16-bit value (2's complement)
CDR: NIL

P-LISP Version 3.Z User's Manual

3) Numeric-floating point
Cell 1:

CAR: pointer to cell 2
CDR: NIL

Cell 2:
CAR: exponent and 1st byte of mantissa
CDR: pointer to cell 3

Cell 3:
Bytes 1-3: last 3 bytes of mantissa
Byte 4: s_ign byte

4) String A tom
Cell 1:

CAR: pointer to print-name of string
CDR: 0

Page 8-Z

Because P-LISP is normally looking at language-card RAM (even if
you do not have a language card), you must do the appropriate
bank-switching in your machine language routine (depending on what you
want to do). If you wish to call a monitor ROM routine, you must
select ROM in your routine by referencing ROMSEL (if you don't know
what any of this means, you should consult your language card
reference manual). If you wish to select Applesoft, you should CALL
the routine FPSEL. If your routine is going to reference workspace
memory, you MUST first select RAM: this is done by making TWO
references to RAMSEL. The addresses for these labels are listed
below. Note that P-LISP does a ROMSEL before executing a CALL;
therefore, you cannot put your machine language routine on the
language card.

The LISP interface to your routine should be an EXPR that CALLs
the routine. If you wish to pass arguments to the routine, this must
be done via the environment list. For example, you can define a
function like

(MYFUNCTION (LAMBDA (X)
(CALL MYROUTINE))

and then access X in MYROUTINE via the environment list. The pointer
to the environment list is in page zero location ENVPTR. After the
call on MYROUTINE, X will be at the "front" of the list; a pointer to
its value will be in the CAR of the SECOND cell on the list (the CAR
of the first cell contains a pointer to X). If MYFUNCTION takes two
arguments, say X and Y, the value of Y will be in the CAR of the
FOURTH cell.

If your routine is to return a value, you should put a pointer to
that value in RESPTR before the return; otherwise, CALL will simply
return the address of the CALLed routine. You should return to P-LISP
via an RTS.

P-LISP Version 3.2 user's Manual Page 8-3

Some important addresses and entry points are listed below. All
addresses are given in hex. There is no guarentee that these routines
will not have unexpected side effects when used by a caller other than
the interpreter; you should be sure you think you know what you're
doing before using them.

Page Zero locations:

RES $50
CELPTR $511
11TMPTR $SC
ATMTST $69
RDPTR $6A
RESPTR $6C
STKCEL $6E
OBLSTPTR $7B
SIGN $7F
FREPTR $80
FAC $9D
ARG $115
WKl $CE
CARPTR $EB
ARGPTR $ED
PRINTFLG $EF
WINDWDTH $F0
ENVPTR $FB
FREEFLG $FD

Other locations:

R11MSEL
ROMSEL

$COBB
$C081

P-LISP Version 3,2 User's Manual Page 8-4

Location ATMTST contains the value $02 which should be used wh.,,n
testing the status of bit 1 of a pointer (see example below).

FREPTR points to the free-space list, a list of available cells.

OBLSTPTR points to the object list.

ROMSEL should be referenced to select the motherboard ROM.

RAMSEL should be referenced TWICE when selecting workspace RAM.

Entry points:

FPSEL - $A02 - select Applesoft

SCROLL - $ADA - send a carriage return to the output device

GOUT - $AOC - send the character in the accumulator to the
output device, RAM is selected after this call.

NEWNUMAT - $B37 - generates ·a new numeric atom from the contents
of FAC and puts a pointer to the atom in ATMPTR. If the atom has
a fractional part, a floating point atom is generated; otherwise
an integer atom is generated. FAG should be in normalized
exponential form, with the sign in FAC+S,

NEWINT - $B5C - generates a new integer atom. The integer value
should be in RES, with the sign in SIGN ($0 for positive, $FF for
negative). ATMPTR points to the new atom.

GETCEL - $C79 - moves contents of CELPTR to WKl and puts a new
cell from the free-space list in CELPTR. A garbage collection is
performed if the free-space list is empty,

CARLINK2 - $BEF - links CELPTR to the CAR of WKl.

CDRLINK2 - $BCB - links CELPTR to the CDR of WKl.

WKlCAR - $DCE - replaces WKl with its CAR

WKlCDR - $DC0 - replaces WKl with its CDR

PUSH - $EB4 - pushes the contents of the X and Y registers onto
the recursion stack, X register first.

POP - $FIA - pops the recursion stack, putting the top two bytes
in the X and Y registers, Y register first.

CELPUSH - $EEO - pushes CELPTR onto the recursion stack.

CELPOP - $EF4 - pops recursion stack, putting result in CELPTR.

P-LISP Version 3,2 User's Manual Page 8-5

RESPUSH - $EFG - pushes RESPTR onto recursion stack

RESPOP - $F03 - pops recursion stack, putting result in RESPTR.

WKIPUSH - $FOB - pushes WKl onto recursion stack.

WKlPOP - $Fl2 - pops recursion stack, putting result in WKl.

READ - $DFD - reads a sexpr from the input device, The sexpr is
returned in RDPTR. For a normal READ, FREEFLG should contain a
$0; for a free-format READ, it should contain a $FF. Be sure to
reset FREEFLG to $0 if you change it!

PRINT - $F31 - prints the sexpr in WKl, String atoms will be
printed with quotes if PRINTFLG is set to $FF and without quotes
if PRINTFLG is set to $0.

FACGET - $1114 - loads FAG with a floating-point number, A
pointer to cell 2 of the numeric atom should be in WKI.

INTGET - $10BC - loads RES with an integer. A pointer to cell 2
of the numeric atom should be in WKI.

EVLPUSH - $1253 - pushes EVLPTR onto recursion stack,

EVLPOP - $125A - pops recursion stack, putting result in EVLPTR.

EVLCAR - $128E - replaces EVLPTR with its CAR

EVLCDR - $1280 - replaces EVLPTR with its CDR.

ATEVAL - $1292 - evaluates an atom. The .. tom's pointer (with bit
1 CLEARED) should be in CARPTR. The value is returned in RESPTR.
If the atom has no value, the carry flag is set.

LITCHK - $141B - checks if ARGPTR points to a literal atom,
Carry is cleared if so, set if not. If the atom bit is set,
LITCHK clears the bit.

ARGPUSH - $1389 - pushes ARGPTR onto recursion stack.

ARGPOP - $1390 - pops recursion stack, putting result in ARGPTR,

ARGCAR - $1377 - replaces ARGPTR with its CAR

ARGCDR - $1385 - replaces ARGPTR with its CDR

NILRET - $E9D - sets RESPTR to NIL.

TRET - $14F3 - sets RESP TR to T.

P-LISP Version 3.2 User's Manual Page 8-6

NUMCllK - $1510 - checks if ARGPTR points to a numeric atom.
Carry is cleared if so, set if not.

ARGTOWKl - $2134 - moves ARGPTR to \I/Kl.

WKlARG - $19[,'A - moves WKl to ARGPTR.

ARGLD - $1D0O - loads ARG with a floating-point number. ARGPTR
should point to cell 2 of the atom.

FACLD - $1D11 - same as ARGl,D, except FAC is loaded.

INTALD - $1O2B - routine to float and load an integer value into
ARG. ARGPTR should point to cell 2 of the integer atom.

INTFLD - $1O3B - same as INTALD, except FAC is loaded.

ADD2 - $1D69 - adds FAC and ARG and returns pointer to the
resulting atom in RESPTR.

SUB2 - $1D9B - subtracts FAC from ARG. Result returned in RESPTR.

MULT2 - $1OCl - multiplies FAC by ARG. Result returned in RESPTR.

DIV2 - $1DE7 - divides ARG by FAC. Result in RESPTR.

EQNUM - $1F98 - returns carry set if the atom at ARGPTR is equal
to the a tom at WKl, otherwise carry cleared, The atoms must be
either numeric or string atoms.

ERROR - $24EA - error handler. Register X should contain the
error code minus 8. Y should contain the function code ($42 for
EXP Rs). Part of the a error message might not make sense;
specifically, the argument list to the function in the error
message will probably be the address of the machine language
routine.

GC3 - $28B3 - garbage collector. RESPTR will contain a pointer
to an atom equal to the number of cells collected.

P-LISP Version 3.2 User's Manual Page 8-7

Example:

Suppose I want to write a function, CDDR, which returns the
CDR of the CDR of its argument, via a machine subroutine. I
could do this as follows:

(DEFINE (CDDR LAMBDA (X)
(CALL 768))))

I would have the following subroutine at location 768 (hex
location $300):

COOR LDA ENVPTR
STA WKl
LDA ENVPTR+l
STA WKl+l
JSR WKlCDR
JSR WKlCAR
LDA WKl

atom
BIT ATMTST
BNE CDDRAT
JSR WKlCDR
LDA WKl+l
BEQ CDDRFN
JSR WKlCDR

CDORFN LDA WKl
STA RESPTR
LDA WKl+l
STA RESPTR+l
RTS

CDDRAT LDX #$8
LDY #$3E
JMP ERROR

;move environment ptr to WKl

;get second cell
;WKl now points to the value of X
;make sure WKl doesn't point at an

;gives us (CDR X)
;return if result is NIL

;gives us (COR (CDR X))
;return WKl in RESPTR

error code:Bad List Argument
function code for EXPRS
goto error routine

P-LISP Version 3.2 User's Manual Page 9-1

CHAPTER 9 -- SAMPLE PROGRAMS

P-LISP is supplied with four sample programs.
demonstrate sample LISP applications as well as the
the P-LISP system. By examining these programs,
also learn a little bit about LISP programming.

The sample programs are:

They are meant to
capabilities of
the novice reader may

-- Towers of Hanoi, a lo-res qraphics demonstration of logical
problem with a simple recursive solution.

-- Hilbert, a hires graphics program that draws a recursive
design on the display screen.

-- Cale, a simple calculator program that demonstrates how LISP
can be used in symbolic math applications.

-- Eliza, a classic Artifical In tel!igence application of LISP.

All the above programs are supplied both in workspace format and
in text file format.

l) Towers of Hanoi

You can load this program either by EXECing HANOI. TEXT or by
LOA Ding HANOI. In brief, the Towers of Hanoi problem is as follows:
assume there are three towers, labelled A, B, and C. On Tower A is a
stack of disks, each of different size, the disks stacked in order of
decreasing size from bottom to top. The problem is to move the stack
of disks, one disk at a time, from Tower A to Tower B. The catch is
that you cannot put a disk on top of a smaller disk.

This problem has a simple recursive solution: given N disks on
tower A, you can move the disks to Tower B by:

a) moving N-1 disks from A to C
b) moving the bottom disk on A to B
c) moving N-1 disks from C to B.

The program HANOI demonstrates the solution to this problem. To
invoke the program, type (HA NOi). The program will ask you to enter
the number of disks on Tower A (any number between 1 and 6 inclusive).
After you enter the number, the program will demonstrate (in lores
graphics) the moves necessary to solve the problem. When all the
disks are on Tower B, hit any key to get ·back to the program.

P-LISP Version 3.2 User's Manual Page 9-2

2) Hilbert

HILBERT is a program that draws a design in hires graphics. The
design has up to 7 levels: each level can be defined recursively in
terms of the previous level, A text file version of the program is in
the file HILBERT.TEXT: a workspace version (with the appropriate
memory map for hires graphics) is in the file HILBERT. You should use
this file to run the program.

To run the program, LOAD HILBERT and then type (HILBERT). The
program will then ask you to enter a level between 1 and 7 inclusive.
You should start with 1 and work your way up to see the recursion
embedded in the higher levels. Once the design is finished, hit any
key to get back to the program.

In both the Hilbert and Hanoi demos, you will notice the computer
pause every now and then while drawing on the screen, This pause is
when the interpreter is performing a garbage collection.

3) Cale

CALC is a simple calculator program. To use it, either type EXEC
CALC. TEXT to EXEC the functions into your workspace or LOAD CALC to
load the workspace version, To invoke CALC, type (CALC),

The program can perform addition, subtraction, multiplication,
division, and assignment, via the operators +, - , *, /, and =
respectively. Multiplication and division have precedence over
additon and subtraction. Assignment has the lowest precedence.
Expressions can also be nested in parentheses. If an expression
cannot be evaluated, or if a numeric overflow or similar error occurs,
the program will print the message SYNTAX ERROR.

To use the program, simply type an arithmetic expression into
CALC: the program will return the result of the expression. Each
token in the expression (atom, number, or operator) should be
surrounded by spaces.

Ex:
With CALC running, I can enter the following:

?3 + (4 * 9) - 12 / 3

and CALC responds with

35

I can also assign values to atoms, for example,

?x = 9 - (8 + 2 * 3) + 10
5

P-LISP Version 3.2 User's Manual

Now, X can be used in subsequent expressions:

?y = X + X * X

30

?y - 2 * X

20

If I try doing something illegal, like

?z = x I 0

the program responds with

SYNTAX ERROR

Page 9-3

I would also get this error if I used an atom in an expression
that I have not assigned a value.

t Eliza

ELIZA is a classic example of the use of LISP in an Artificial
Intelligence (AI) application. Originally written by Joseph
Weizenbaum, ELIZA is a program that simulates a patient's discussion
with a psychiatrist. While appearing on the surface to possess
"intelligence", the program is actually a rather simple pattern
matcher. Here is a sample dialogue with ELIZA: as usual, user input
is in lower case, with the program's responses in upper case:

MAY I HELP YOU?

?i want you to help me

WHAT WOULD IT MEAN TO YOU IF YOU GOT ME TO HELP YOU?

?im afraid to tell you

YOURE NOT REALLY TALKING ABOUT ME, ARE YOU?

?what do you mean

WHY DO YOU ASK?

?are you asking me

WHY ARE YOU INTERESTED IN WHETHER OR NOT I AM ASKING YOU?

?why do you keep answering with questions

P-LISP Version 3.2 User's Manual

DOES THAT QUESTION INTE~EST YOU?

?i dont know

DONT YOU REALLY KNOW

?no

ARE YOU SA YING NO JUST TO BE NEGATIVE?

?oh shut up

YOU ARE BEING UNFRIENDLY

?goodbye

GOODBYE

Page 9-4

To run ELIZA, LOAD the ELIZA workspace and type (ELIZA), Your
input to ELIZA should consist of words only (no lists!) with no
punctuation (DON'T use quotes in contractions!), Type GOO DB YE to exit
ELIZA. ELIZA is also supplied in text file format in the file
ELIZA.TEXT.

