
TECHNICAL SPECIFICATIONS

FOCAL

DIGITAL EQUIPMENT CORPORATION. MAYNARD, MASSACHUSETTS

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1

4.2

4.2.1

4.2.2

4.2.3

4.2.4

4.3

4.4

4.4.1

4.4.2

4.4.3

4.4.4

CONTENTS (Cont)

Editing and Text Manipulation Facilities

The FOR Statement

The Conditional IF Statement

The GOTO Command

The RETURN Command

The QUIT Command

The Comment Statement

The CONTINUE Statement

The SET Statement

CHAPTER 4
PROGRAM SPECIACATIONS

Machine Requirements

Design Specifications

Design Goals

Input

Output

Organization

Hardware Errors

Internal Environment

F loati ng -Poi nt Ari thmeti c System

Interna I Subroutine Conventi ons

Character Sorting

Language

APPENDIX A
FOCAL COMMAND SUMMARY

APPENDIX B
ERROR DIAGNOSTICS

APPENDIX C
TO SAVE BINARY OF INITIAL DIALOGUE

iv

Page

3-4

3-5

3-6

3-6

3-6

3-7

3-7

3-7

3-7

4-1

4-1

4-1

4-1

4-2

4-3

4-4

4-4

4-4

4-6

4-9

4-9

4-1

CONTENTS (Cont)

APPENDIX D
FOCAL CORE LAYOUT -USAGE

APPENDIX E
SYMBOL TABLE

APPENDIX F
FOCAL SYNTAX IN BACKUS NORMAL FORM

Command Routines

APPENDIX G
NOTES EXPLANATION OF NAGSW

APPENDIX H
FUNCTIONS

APPENDIX I
PROGRAM LISTS

ILLUSTRATIONS

v

4-8

CHAPTER 1

INTRODUCTION

FOCALt is a service program for the PDP-8 family of computers, designed to help scientists,

engineers, and stu@)ts solve numerical problems.

FOCAL M language is designed to be used as a tool in a conversational mode; that is, the

user creates his problem step by step, while sitting at the computer; as soon as the steps of the problem

have been completed, they can be executed and the results checked. Steps can be quickly changed,

added, or deleted.

One great advantage of a computer is that once a problem has been formulated, the machine

can be made to repeat the same steps in the calculation over and over again. Until now, the job of

generating the program was costly, time-consuming, and generally required the talents of a specialist

called a programmer. For many modest jobs of computation, a person unfamiliar with computers and

programming would use a desk calculator or slide rule to avoid the delays, expense, and bothersome de

tail of setting up his problem so that the programmer could understand it.

FOCAL circumvents these difficulties by providing a set of simplified techniques that permit

the user to communicate directly with the computer. The user has the advantages of the computer put

at his disposal without the requirement that he master the intricacies of machine language programming,

since the FOCAL language consists of imperative English statements and standard mathematical notation

is used.

The FOCAL language is flexible; commands may be abbreviated, and some may be concat

enated within the same line. Each input string or line containing one or more commands is terminated

by a carriage return.

A great deal of power has also been put into the editing properties of the command language.

Normally, deletions, replacements, and insertions are taken care of by the line number which indicates

where this line should go or what line is to be replaced. Ho~ever, if single characters are to be

changed within a FOCAL command line, it is not necessary to retype the entire string. The changes

may be executed by using the MODIFY command. Thus, complex command strings may be modified

quite easily.

In operation, the program indicates that it is ready to receive input by typing an asterisk.

On-line command/input may be either direct (to be executed immediately) commands or indirect (to be

stored and executed later). An example of a direct command is

*TY PE 5*5*5, 1 user
125.000 PDP-8

*

t Formulating On-Line Calculations in Algebraic Language.
S" Trademark ~ the DiQital Equipment Corporatio;;, Maynard, Mass.

1-1

The final asterisk indicates that FOCAL is ready for its next command. All commands may be given in

immediate mode.

Text input requires that a numerical digit, in the form ab.cd and within a range of 1.01 to

15.99 follow the * . The number to the left of the period is called the group number. The nonzero

number to the right is called the specific line or step number. While keying in command/input strings,

the rubout key and the left arrow may be used to delete single characters or to kill the entire line,

respectively.

Since the command decoder is table driven, FOCAL could be modified by a small binary tape

to understand commands in fore ign languages.

FOCAL is written especially for the educational market and is intended to be used as a stu

dent's problem solving tool. It attempts to give quick and concise reinforcement, to minimize turnaround

time, and to provide an unambiguous printed record.

It is also an extremely flexible, high accuracy, high resolution, general purpose desk cal

culator and demonstration program.

1-2

CHAPTER 2

USAGE

2. 1 REQUIREMENTS

Any 4K PDP-8 family computer with Teletype may be used with FOCAL.

2.2 LOADING PROCEDURE

a. The RIM or Read-In-Mode Loader must be in memory. (See RIM Loader Manua I for a
thorough discuss ion.)

b. The RIM Loader is used to load the Binary Loader. (See the Binary Loader Manual for
a complete description.)

c. The Binary Loader is used to load FOCAL.

d. Upon halting, press the CONTINUE key, since the program is loaded in three sections
for additional checksum protection.

e. Place 200, the starting address of FOCAL, into the Switch Register when the complete
tape has been loaded.

f. Press the LOAD ADDRESS key.

g. Press the START key.

h. The initial dialogue will begin.

2.3 INITIAL DIALOGUE

The program will identify which of the six DEC 12-bit computers you are using and make ap

propriate corrections to itself. It will then permit you to reject the extended functions to provide extra

space, if desired.

FOCAL is ready for your commands when it types *

2.4 OPERATION

2.4. 1 Restart Procedure

There are two poss ible methods of restarting the system.

Method 1 - Type the character control/C at any time; (FOCAL acknowledges this by typing ?01.00).

Method 2 -

a. Put 200 into the Switch Register.

b. Press the LOAD ADDRESS key.

c. Press the START key.

2-1

d. The program will then type ?OO.OO indicating a manual restart, and an asterisk indicating
it is ready to receive input.

2.4.2 Error Recovery

If an error is made while typing commands to FOCAL, one of the following two methods may

be used to recover.

a. Use the RUBOUT key on the teletype keyboard to erase the preceding character.

The RUBOUT key echoes \ when typed for each character removed.

Example: *2.70 SETS \SINE = TEMP
*WRITE 2.70
02.70 SET SINE = TEMP

b. Use the MODIFY command with the modify control characters to search the command
string for any character in error and alter or delete that character. Example is shown in the Command
List. Note that the RUBOUT key has the same function while in the modify command mode.

2.4.3 Saving FOCAL Programs

To save a FOCAL text type * WRITE ALL, turn on the punch, type @ marks for leader

trailer, and type carriage return. When all of the program has been typed out, type additional @ marks

for more leader-trailer, turn off the punch, and continue your conversation with the computer.

2.4.4 Term i nators

Any of the three types of parenthetical pairs may be used in alphanumeric expressions: paren

theses (()), angle brackets « » , and square brackets ([]). The program checks to see whether or

not the proper matching terminator has been used at the correct level. Use of these terminators in dif

ferent configurations should provide additional clarity in reading alphanumeric expressions, especially

those which must contain many parenthetical expressions. The only place where normal parentheses

must be used is around the expression in the IF command.

2.4.5 T race Feature

As a further aid to diagnosing or debugging difficulties in a program,

a. a trace feature may be used to find where your errors are, to follow program control, and
to create special formats. To operate the trace feature, insert a question mark into a command string at
any point other than as the left most character. Each succeeding character will then be typed out as it
is interpreted until another question mark is encountered.

2-2

2.4.6 Variable Names and Functions

A variable name consists of one or two alphanumeric characters of which the first must be a

letter. Additiona I characters are ignored.

letter F:

2.4.7

Function names are easily distinguished from variable names because they start with the

FSIN, FCOS, FATN, FLOG, FEXP, FSQT, FADC,
FDXS, FDIS, FRAN, FSGN, FABS, FITR, FNEW

Error Diagnostics

The error diagnostic printouts are intended to be efficient and yet informative on both a

general and expl ic it level. By using these in conjunction with the trace feature, errors may be pin

po i nted prec ise I y .

The printout is in the form ?XX.YY. The XX is a category number, and the YY is a specific

number derived from the core address of the error call. The categories are:

00 - Console restart by manual control

2.4.8 Arithmetic Priorities

01 - Interrupt by control - C
02 - Storage or number exceeded
03 - Miscellaneous or illegal character
04 - Format error
05 - Non-existent function or bad format

*
/
+-

Operations of equal priority are executed from left to right (e.g., T 2t3t2=+16~.

2-3

3.1 TYPE AND ASK STATEMENTS

CHAPTER 3

COMMANDS

The TYPE and the ASK statements are used for output and input of I iterals and alphanumeric

calculations. Formatting of input/output is done within the statement itself. The simplest form of the

TYPE statement is a command such as TYPE A*l.4. This will cause the program to type = , evaluate

the expression, and type out the result. Several expressions of this kind may be typed from the same

statement if the expressions are each ended by commas. The ASK statement is similar in form except

that only single variable names may be used between commas, and the user types in the values.

3. 1. 1 Literals

For output of literals, the user may enclose characters between quotation marks. A carriage

return will automatically generate closing quotation marks. One unusual character that one might wish

to imbed in quotes is the bell, but it may only be inserted during initial input.

3.1.2 Print Positions

Carriage returns are not automatically suppl ied at the term ination of a typeout. In order to

supply carriage returns within a TYPE or ASK statement, the exclamation mark (!) is used. This is

similar to the use of the slash in FORTRAN format statements.

Occasionally, it is desirable to return the carriage and type out again on the same I ine with

out giving a line feed. A number sign (#) returns the print mechanism to the left hand margin but does

not feed the paper forward. This feature might be used in plotting another variable along the same

coordinate.

3.1.3 Symbol Table

The contents of the symbol table may be typed out to see what the current values are and

wh ich variables have been created by TYPE $. The symbol table is typed with subscripts and values in

chronological order. The routine then returns as though a carriage return had been encountered in the

TYPE statement, thereby terminating the TYPE command. Both the TYPE and the ASK statements may

be followed by ; and other commands, unless a $ is in the string.

3-1

3.1.4 Output Formats

There is a symbol to change the output format within a TYPE statement: %X. YY, where X

and YY are positive integers less than or equal to 19. X is equal to the total number of digits to be

output and YY is equal to the number of digits to the right of the decimal point.

On output, leading Os are typed as spaces. If the number is larger than the field width shows,

Xs will be typed. E format is specified by % alone or by %.OX for X decimal points in the E format.

(Floating-point decimal: ± O.XXXXXXXE ± Y where E means II 10 to the Yth power. ") The current out

put format is retained until explicitly changed.

3.1.5 Spec ia I Characters

The exclamation point (I), percent (%), dollar sign ($), and the number sign (II) may be used

after the occurrence of quotation marks or by themselves. They cannot be used to terminate alphanu

meric expressions. They may be used in either TYPE or ASK commands.

The TYPE statement precedes its numerical typeouts with an equal sign (=) before beginning

the output conversation process. The ASK statement types a colon (:) when it is ready to receive key

board data.

If the user wishes an expression typed before its results, he may bracket the expression by

question marks. Th is is a spec ial use of the trace feature.

*TYPE ?A*5.2?
A*5.2=+ 10.40
*

3.1.6 Terminators

In the ASK statement, arguments are scanned by the GETARG Recursive Routine and may

therefore be terminated by any legitimate terminating character (e.g., space, comma, * ,etc.).

In the TYPE statement, arguments are scanned by the EVAL Recurs ive Routi ne and must therefore be

term inated by comma, sem icolon, or carriage return. In either, command arguments may be preceded

by format control characters II ! "

3.1.7 Input Formats

Keyboard responses to the ASK inputs may

a. have leading spaces

b. be immediately preceded by + or - sign if desired or required

c. be in any fixed point or floating point format

3-2

d. be terminated by any terminating character, carriage return, or ALTMODE. However,
it is recommended that the space be adopted as the conventional and general purpose input term inator.
The ALTMODE is a special nonprinting terminator that may be used to synchronize the program with ex
ternal events. For example, if you wish to insert special paper in the teletype before executing the
program, type Ask Ai GO and RETURN, then load your paper, and hit ALTMODE.

3.1.8 Alphanumerics

Input data that is in response to an ASK command may take any format, may be signed or

unsigned, and must be terminated by a legitimate terminating character (space, CR, comma, /, etc.).

This means that alphabetic input may also be accepted by an ASK input command. This is done by a

simple hash-coding technique so that the program can recognize keyboard responses by a single compare.

See example under the IF command for an illustration of how to program the recognition of the user

reply "WAIT".

3.1.9 Off- Li ne Tapes

To prepare data tapes off-line, type the data word, the terminating space, and the "here-is"

key. Use backspace and rubout to remove characters off-line. (See technical specs for alternate use

without interrupts.)

3.1.10 Corrections

For editing of input to an ASK command before the input has been terminated, the left arrow

(<-) is used.

3.1.11 Roundoff

Numbers to be typed out are rounded to the last significant digit to be printed (i .e., the

rightmost digit of the requested format) or to the sixth significant digit, whichever is smaller.

3.2 THE DO COMMAND

The DO command is used chiefly to form subroutines out of single lines, groups of lines, or

of the entire text buffer. Thus, the instruction DO 3.3 makes a subroutine of line 3.3. For a single

line subroutine, control will be returned when the end of the line is encountered or when the line is

otherwise term inated (such as by a RETURN statement, or in the case of TYPE, with the $).

One of the most useful features of a command language of this type is the ability to form

subroutines out of entire groups. Thus, the statement DO 5 calls all of group 5 as a subroutine be

ginning with the first group 5 line number. Control will then proceed through the group numbers going

3-3

from smaller to larger. A RETURN or EXIT is generated from this type of subroutine by using the word

RETURN, or by encountering the end of that group, or by transferring control out of that group via a

GOTO or IF command. Similarly, the entire text buffer may be used as a recursive subroutine by simply

using DO or DO O.

The DO statement may be concatenated with other legitimate commands by terminating it with

a semicolon. Thus, a single line could contain a number of subroutine calls. In this way, several forms

of complex subroutine groupings may be tested from the console.

The number of DO commands which may be nested linearly or recursively is limited only by

the amount of core storage remaining after inclusion of the text buffer and the variable storage.

NOTE

When a GOTO or IF statement is executed within a DO
subroutine, control is transferred immediately to the ob
ject line of the GOTO command. That line will be ex
ecuted and return made to the DO processor. If the next
I ine number is with in the group (if this is a group sub
routine) it will be executed. If, however, a line number
outside of that g~oup is about to be executed, then a re
turn will be made from the DO subroutine and the remain
der of the DO command line, if any, will be processed.

3.3 EDITING AND TEXT MANIPULATION FACILITIES

Line numbers which have already been used and are used again in a new input will cause the

new input to replace the I ine that previously had that number. Insertions are made at the appropriate

point in a numerically ordered string of lines. For example, line number 1.01 (the smallest line number)

will be inserted in front of (or above) line number 1.1. The largest line number is 15.99.

Removal of a single line may be made by using the ERASE command. For example, ERASE2.2

will cause line 2.2 to be deleted. No error comment will be given if that line number does not exist.

The command ERASE 3 or 3.0 will cause all of group 3 to be erased. To delete all of the text, one must

type the words ERASE ALL. This insures that all text is not erased accidentally.

ERASE, used alone, has the function of merely removing the variables. This may also be

thought of as initializing the values of the variables to zero.

In order to examine the contents of a line, one may type WRITE 3.3. This will cause line 3.3

to be typed out with its line number on the Teletype. WRITE 4.0 will cause all of group four to be writ

ten on the Teletype. The WRITE ALL will cause all of the text to be printed on the Teletype, left justi

fied with title and line numbers in numerical order. The WRITE and ERASE commands may not be fol

lowed by any other commands.

3-4

Often only a few characters need be changed in a particular line. To facilitate this job, so

that the entire line does not have to be replaced, we have included the properties of the MODIFY com

mand. Thus, to modify characters in a line, one would type MODIFY 5.41, in order to modify the

characters of line 5.41. Th is command is term i nated by a carr iage return, whereupon the program wa i ts

for the user to type that character at which he wishes to make changes or additions. After he has done

so, the program will type out the contents of that line until the search character is typed. (The search

character is not echoed when it is first keyed in by the user.) The program wi II now accept input.

At this point, the user has seven options. These are

a. to type in new characters in additi on to the ones that have a Iready been typed out.

b. to type a form-feed. This will cause the search to proceed to the next occurrence, if
any, of the search character.

c. type a bell which allows him to change the search character just as he did when first
beginning to use the MODIFY command.

d. use the rubout key to delete characters going to the left.

e. type a left arrow to delete the line over to the left margin.

f. type a carr iage return to term i nate the line at that po i nt and move the text to the right.

g. type line-feed to save the remainder of the line.

The ERASE ALL and MODIFY commands are generally used only in immediate mode since

they return to command mode upon completion. The reason for th is is that internal pointers may be

changed by these commands.

During command/input the left arrow will delete the line numbers as well as the text. During

the MODIFY command the left arrow will not delete the line number.

When the rubout key is struck a backs lash (\) is typed for each character that is deleted.

Any modifications to the text wi II cause the variables to be deleted as if an ERASE command

had been given. This is caused by the organization of our data structure. It is justified by the prin

ciple that a change of program probably means a change of variables as well.

3.4 THE FOR STATEMENT

This command is used for convenience in setting up program loops and iterations. The gen

eral format is: FOR A = B,C,D;---. The index A is initialized to the value B, then the command string

following the semicolon is executed. When the carriage return is encountered, the value of A is incre

mented by C and compared to the value of D. If A is less than or equal to D, then the command string

after the semicolon is executed again. This process is repeated until A is greater than D.

3-5

A must be a single variable; B, C, and 0 may all be expressions, variables, or numbers.

The computations involved in the FOR statement are done in floating point arithmetic. If comma and

the value C are omitted, then it is assumed that the increment is one.

Example: SET B= 3; FOR 1= 0,10; TYPE Btl,!

3.5 THE CONDITIONAL IF STATEMENT

In order to provide for transfer of control after a comparison, we have adopted the IF state

ment format from FORTRAN. The normal form of the IF statement contai ns the word IF, space, a par

enthesi zed expressi on, and three I ine numbers separated from each other by commas. The program will

GOTO the first line number if the expression is less than zero, the second line number if the statement

has a va I ue of zero, and the th i rd line number if the va I ue of the express ion is greater than zero.

Alternative forms of the IF command are obtained by replacing the comma between the line

numbers by a semicolon. In this case, if the condition is met which would normally cause the program

to transfer to a line number past that position, then the remainder of the line will be executed. Thus,

if one desires only a two way match, you may say "IF (expression) line number; other command".

Example: IF (REPLY - 1 WAIT + 10000) 6.4,5.01;RETURN
IF (REPLY - 1YES + 19000) 6.3,5.02;6.3

3.6 THE GOTO COMMAND

This command causes control of the program to be transferred to the indicated line number.

A specific line number must be given as the argument of the GOTO command. If command is initially

handed to the program by means of an immediately executed GO, control will proceed from low num

bered lines to higher numbered lines as is usual in a computer program. Control will be returned to

command mode upon encountering a QUIT command, the end of the text or a RETURN at the top level.

The operation of the GOTO is slightly more complicated when used in conjunction with a

FOR or a DO statement. Its operation is perfectly straightforward when used with any other statement.

3.7 THE RETURN COMMAND

The RETURN command is used to exit from DO subroutines. It is implemented by merely

setting the current program counter to zero. When this situation is encountered by the DO statement it

exits. (Refer to the DO command, Section 3.2.)

3-6

3.8 THE QUIT COMMAND

A QUIT causes the program to return immediately to command/input mode, type * ,and wait.

3.9 THE COMMENT STATEMENT

Beginning a command string with the letter "C" will cause the remainder of that line to be

ignored so that comments may be inserted into the program.

3.1 0 THE CONTINUE STATEMENT

This word is used to indicate dummy lines. For example, it might be used to replace a line

referenced elsewhere without changing those references to that line number.

3.11 THE SET STATEMENT

The SET command for arithmetic substitution is used for setting the value of a variable equal

to the result of an expression. The SET statement may contain function calls, variable names, and

numerical literals on the right hand side of the equal sign. All of the usual arithmetic operations plus

exponentiation, may be used with these operands. The priority of the operators is a standard system:

+-/* t. These, however, may be superseded by the use of parenthetical expressions. The SET statement

may be terminated by either a carriage return or a semicolon, in which case it may be followed by ad

ditional commands.

SET AA=B*(5-t<6+CONST> *ALPHA/[5/BET A])

3-7

CHAPTER 4

PROGRAM SPECIFICATIONS

4.1 MACHINE REQUIREMENTS

The minimum hardware configuration necessary to run this program is a 4K PDP-8 family or

PDP-5 computer with ASR-33.

EAE for speed, scope and an additional 4K memory for text storage are potential options.

4.2 DESIGN SPECIFICATIONS

4.2.1 Design Goals

This is a JOSS * -like or FORTRAN-like conversational language and operating system for

a basic PDP-8. It is designed to provide ease and power for on-line editing and execution of symbolic

programs.

4.2.2 Input

Either the keyboard or the low-speed reader is used for input of program text. The keyboard

is also used for typing commands to be executed immediately. Keyboard input is single buffered

internally.

4.2.2.1 Input Format- See the description of the commands in Chapter 3 for format information.

4.2.2.2 Character Set - Input and output characters are in ASCII teletype code.

IntElrpretive operations are also done internally in ASCII.

The text buffer is packed two characters to a word as follows.

number = represented as: prints as

300 = not packed = ignored: @

301 - 336 = 01 - 36: A - Z

337 = not packed - edit control, kill line:

240 - 276 = 40 - 76: symbols

277 = 37: ?

340 - 376 = 7740 - 7776 (extended codes): non-printing

* JOSS is a copywrited name of the RAND Corporation.

4-1

377 = not packed - edit control, delete preceding character; if a
character is deleted, \ {backs lash) is typed.

200 = not packed - ignored: leader-trai ler

210 - 237 = 7701 - 7737: control characters

000 = not packed - ignored: blank tape.

4.2.3 Output

4.2.3.1 Output Format - See the TYPE and WRITE statements for format of output. The output

character set is the same as that for input.

4.2.3.2 The Input/Output and Interrupt Processor - The purpose of the interrupt handler and the I/O

buffers is to permit input and output to proceed asynchronously with calculations. This allows an

optimal use of the computer time. When the interrupt handler finds that the teletype output flag has

been raised, it clears that flag and looks to see whether there are any additional characters in the

teletype output buffer to be printed. If there are, it takes the next character from the buffer, prints

it, clears that location in the buffer I and moves the pointers. Separate pointers are maintained for both

the interrupt processor and for the program output subroutine (XOUTL). If the interrupt handler finds that

there are no ~ore characters to be output on the Teletype, it wi II c lear a teletype in-progress-switch

called TELSW. If it does output another character it sets TELSW to a nonzero value.

When the program desires to place characters in the buffer for the interrupt processor to

print, it makes a call to XOUTL. This routine first checks to see whether or not TELSW has been set.

If TE LSW is zero, then no further interrupts are expected by the interrupt processor so the output routine

immediately types the character itself and sets TELSW to a nonzero value. Otherwise, if the interrupt

processor is in motion, then the output routine places the character into the buffer and increments the

pointer. If there is no room in the buffer for additional characters, the low speed output routine waits

until there is. The keyboard input processors are similar in organization to the output routines except that

no in-progress-switch is needed and the input is only double buffered.

Another advantage of using the interrupt system is that it enables you to stop program

loops from the keyboard by typing Control C. The recovery routine wi II then reset the I/o pointers,

type out the message code ?¢1 .¢¢, and return to command mode. Manua I restart via the console

switches also goes to the recovery routine, resets the pointers, and types out message code ?¢¢ .¢¢. In

fact, all error diagnostics go to the recovery routine. Error printing is withheld unti I prior printing is

complete. Otherwise, on occasion, a full buffer could be dumped and the error message could be printed

as many as 16 characters before it should have otherwise occurred. This would be misleading when using

4-2

the trace mode to discover specific errors within a character string.

The recovery routine may also be called by the interrupt processor if it discovers that there

is no more room in the keyboard buffer. This could occur for example, if the user continued to type on

the keyboard whi Ie the program was making computations. He should notice something unusual because

his characters would not be echoed back as he typed.

This error could also occur when reading a paper tape program into the text buffer. If the

output hardware were s lower than the input hardware, more text wou Id be read in than was bei ng read

out of the buffer with the resu It that the program would not empty the reader buffer as quick Iy as it was

being fi lied up, since the program synchronizes the reading of the characters with sending them into the

buffers. In other words, the program synchronizes its side of the I/o buffers, but the interrupt side of

the I/o buffers proceeds at a rate determined by the hardware. To guard against incurring this type of

error with long input tapes, which were prepared off line, carriage returns may be followed by some

blank tape which is ignored by the input routines, thereby giving the output routine time to catch up.

4.2.4 Organization

4.2.4.1 The Internal Structure

a. Part 1 - Arithmetic Package - The arithmetic is done in the floating point system. The

three-word floating point package allows six digits of accuracy plus the extended functions. The

program wi II also be able to use four words without the trigonometric functions. The largest of the

floating point packages occupies locations 4600 - 7577. Both packages have an exponential range of

approximately ten to the six hundredth.

The four-word floating point system creates ten digits of accuracy, inc luding roundoff.

It does, however, require more storage for variables and for push-down-list data.

b. Part 2 - Storage - The major components of the program occupy locations 1 - 3220.

The remaining storage 3220 - 4600 is used for text storage, variable storage, and push-down storage,

in that order. The text occupies approximately two characters per register. The variables occupy either

five or six locations per variable depending on whether the three or four-word option is uti lized.

Remaining storage is allocated to the push-down list. Overflow wi II occur only when this push-down

list exceeds the remaining storage. This could happen in the case of complex programs which have

multiple levels or recursive subroutine calls.

The push-down list contains three kinds of data. One of these is a single location for

push-jump and pop-jump operations. The content of the accumulator is also pushed into the same list

in a single register. The third type of push-down storage is floating point storage.

4-3

This storage allocation scheme permits flexibi lity in the trade off of text size, number

of variab les , and complexity of the program, rather than restricting the user to a fi xed number of

statements or characters, or to a fixed number of subroutine ca lis, or to a limited number of variables.

4.3. HARDWARE ERRORS

The 8/S wi II ha It at location EXIT +2 if a parity error occurs.

4.4. INTERNAL ENVIRONMENT

4.4.1 Floating-Point Arithmetic System

The FOCA L system was desi gned to be easily i nterfac ed for new hardware such as LAB-8,

multiplexed ADC's real-time clocks, or to software such as a nonlinear function.

The information given below, the symbol table, the various lists, and a core layout are

sufficient for all required modifications and patches. This symbolic approach ensures greater flexibi lity

and compatibi lity with DEC modifications to FOCAL, other user's routines, and assembly via PAL III on

a PDP-8.

Example: Suppose we had a scope routine to display characters at a given point on a scope.

We will call this routine from FOCAL as function by FNEW (X, Y, SHOW). Here X and Yare

expressions to be used as display coordinates for the start of SHOW.

First we patch the function branch table:

*FNTABF + 12

XFNEW

When control arrives at XFNEW the X has already been evaluated:

XFNEW, JMS
TAD
DXL
CLA

INTEGER
FLAC + 1

Now we should test for the possibi lity of another argument;

SPNOR
TAD
TAD
SZA
JMP

4-4

CHAR
MCOMMA
CLA
EFUN3I

/ make 12-bits

/ set X -coor.

/ ignore spaces

/ no more

reached •

EFUN31.

Move past the separating comma;

GETC

T est for the end of the parentheses;

TAD
TAD
SNA
JMP

Evaluate the second argument;

PUSHJ

JMS
TAD

CHAR
RPAR
CLA
EFUN3I

EVAL
INTEGER
FLAC + 1

/ exit

DYSi CLA
SPNOR
TAD

/Set Y and i ntensi fy

TAD
SZA
JMP

CHAR
MCOMMA
CLA
EFUN31

Now we are ready to pick up the single letters for display unti I the end of the function is

DCHR, GETC
TAD
TAD
SNA
JMP

CHAR
RPAR
CLA
EFUN31

Char. display routine called

JMS DCHR

We now need a few definitions from the symbol table.

Summary:

FLAC = 44
EFUN31 = 106
CHAR = 152
SPNOR = 4527

a. User defined functions must leave their value, if any, in FLAC and return by a JMP

b. FLAC is converted to an integer in FLAC + 1 by a JMS I INTEGER.

c. The floating point arithmetic interpreter is entered by JMS I 7.

4-5

d. The address of the user's function is placed by him in the FNTABF list.

e. Location BOTTOM contains the address of the last location to be used for storage. If
BOTTOM is made to contain 4277, for example, then the user has from 4300 to 4577 for storage of his
function processor. The user is requested to achieve his function implementations using the information
given here and in the symbol table without needing the actual listing so that changes made by different
users may be compatible and so that they might also be relocated easily should any changes be made by
DEC.

f. The argument following the function name is evaluated and left in FLAC before control
is transferred to the particular function handler. Since evaluation is terminated by either , or a right
parenthesis, a special function could have more than one argument.

Only in the case of multiple' arguments does a user need to worry about saving his
working machine language storage for a possible recursive use of his function. The contents of the AC
are saved by PUSHA and restored by POPA for this purpose. If there is another argument, it may be
evaluated by PUSHJ ; EVAL.

4.4.2 Internal Subroutine Conventions

4.4.2.1 Calling Sequences - The (AC) = 53 unless it contains information for the subroutines. Upon

returns (AC) = 53 unless it contains data.

There are six types of routines and subroutines used in the implementation of this program.

a. Normal subroutines called by an effective

JMS

which contain zero at their entry point

SUBR1, 53

and a return by a

JMP

b. New instructions called by

PRNTLN

and usually defined by

PRNTLN = JMS I.
XPRNT

SUBR1

SUBRl

/ (to print a line number)

where XPRNT is the entry point for a normal subroutine. These new instructions may have multiple
returns and/or multiple arguments:

SORTJ
LIST6-1
INUST -LIST 6

4-6

/ca II;
/OOta list minus one;
/increment to branch table
/return if CHAR is not in LIST 6

These new instruction subroutines often have implied arguments, e.g., GETC, READC,
PACKC, TESTC, and SORTC all use the variable CHAR as their argument. The new instructions SORTJ
and PRINTC use CHAR only if the AC is zero. If the AC is nonzero, then that va lue is used. Sti II
others use only the AC for their argument: RTL6, TSTLPR, PUSHA, and TSTGRP.

c. Recursive routines called by

PUSHJ
EVAL

/call
/address
/return

Where the address contains the first instruction of the routine. The return address is kept in the push-down
list, and exit is made by use of

POPJ /exit subroutine.

Such routines may call each other or themselves in any sequence and/or recursively by saving data on
the push-down list. Others are EVAL, DELETE, PROCESS, PROC, and GETVAR.

d. Command processor routines to handle specific command formats are called by

SORT J /go to command
CONLST-1
COMGO-COMLST

ERROR 3 /i !legal command

The individual command routines use only new instructions and recursive routines. They may exit in one
of three possible ways:

(1) POPJ - if C.R. is encountered or

(2) transfer to another command routine or

(3) transfer to START.

e. Floating point groups of interpretive instructions similar to the following format:

FINT
FGET
FMPY

EPUT
FXIT

FLARG
PTl

FLARG

/enter floating interpreter,

/Ieave floating interpreter.

f. Main processor to handle text input and keyboard commands. This routine could be
"locked out by an instructor to protect and execute a stored program repeatedly.

IBAR, JMP GONE + 11

Simi larly, selected commands are easi Iy deleted by the instructor by placing zero in the appropriate
locations in COMLST.

Line number input and explicit replacements are "short';'circuited" by

INPUTX +4, NOP

4-7

4.4.2.2 Subroutine Organization _ Figure 4-1 illustrates the internal use of various subroutines.

d. COMMAND ROUTINES

COMMAND AND
INPUT PROCESSOR

b.

Q. NORMAl. SUBROUTINES c.

Figure 4-1

4.4.3 Character Sorti ng

If a program must contend with a number of different characters {or 11-bit items} each of

wh ich can initiate di fferent responses, we si mply look up the address of the acti on that corresponds to

a given symbol or bit pattern. If the symbols do not form a continuum, the programmer must find the

most efficient method for determining the corresponding address.

The method used in FOCAL is the table sort and branch. This method uses a subroutine to

match up an input character with one member of a list of characters. The call to the subroutine is

followed by

a. the address minus one of the list and

b. the difference between that list and a second list. The latter list contains the correspond
ing addresses. Thus if a match is found in the first list, the difference is added to the address of that match
to computer the address in the second list which contains the name of the action to be performed.

c. The next instruction to be executed if a match is not found.

4-8

In addition to being simple and concise, although more time consuming than other methods,

this technique has another advantage that is especially useful in a PDP-8: the tables may be placed

at page boundaries to take up the slack that often occurs at the end of a page. This results in a more

effici ent use of avai lable core storage.

4.4.4 Language

The program is written in PAL III with floating point commanc!s plus program defined commands

implemented as subroutine calls.

4-9

APPENDIX A

FOCAL COMMAND SUMMARY

Command Abbr Example of Form Explanation

TYPE T TYPE FSQT (AL t 3+FSQT (B» Evaluates expression, types out =, and
result in current output format

WRITE W

IF

TYPE "TEXT STRING" !

WRITE ALL

WRITE 1

WRITE 1.1

IF (X) 1.2,1.3,1.4;

Types text. Use! to generate carriage
return line feed.

FOCAL prints the entire indirect program.

FOCAL types out all group 1 lines.

FOCAL prints line 1.1

Where X is identifier or expression.

Control is transferred to the first, second, or third line number if (X) is less than, equal to,
or greater than zero respectively. If the semicolon is encountered prematurely then the remainder of the
line is executed.

MODIFY M MODIFY 1.15 Enables editing of characters on
line 1 .15

The next character typed becomes the search character. FOCAL wi II position itself after the
search character; then the user may

a. type new text, or

b. form-feed to go to the next occurence, or

c. bell to change the search character, or

d. rubout to delete backwards, or

e. left arrow to kill backwards, or

f. carriage return to end the line, or

g. line-feed to save the rest of the line.

QUIT

RETURN

SET

ASK

Q

R

S

A

COMMENT C
CONTINUE C

QUIT or * or control-C

RETURN

SET A = 5/B * SCALE (3)

ASK ALPHA (I + 2 * J)

COMMENT
C

A-1

Returns control to user.

Terminates DO subroutines

Substituti on statement

FOCAL types a colon for each variable;
the user types a va I ue to defi ne each
variable.

If a line begins with the letter C, the
remainder of the line wi II be ignored.

Command Abbr

DO D

ERASE E

FOR F

GO G

GOTO G

Example of Form

DO 4.14

DO 4

DO ALL

ERASE

ERASE 2

ERASE 2.1

ERASE ALL

FOR I = x,y ,z; TYPE I

GO

GOTO 3.4

Explanation

Execute line 4.14; return

Execute allgroup 4 lines, return when
group is expanded or when a RETURN
is encountered.

Execute entire indirect text as a sub
routine.

Erases the symbol table.

Erases a II group 2 lines.

Deletes line 2.1 .

Deletes all user text.

The command string following the semi
colon is executed for each value. x,y,
z are constants, variables, or express
ions. x = initial value of I, y = value
added to I unti I lis greater than z. y is
assumed = 1 if omitted.

Starts indirect program at lowest number
ed line number.

Starts indirect program at or line 3.4

C - The Fourteen (14) Functions are

FSQT (
FABS (
FSGN (
FITR (
FRAN (
FEXP (
FSIN (
FLOG (
FDIS (
FADC (
FNEW(

)
)

- Square Root
- Absolute Value

) - Sign Part of the Expression
) - Integer Part of the Expression
) - A Noise Generator
) - Natura I Base to the Power
)and - FCOS (), FATN () - Trig Functions
) - Naperian Log
) and - FDXS () - Scope Functions
) - Analog to Digital Input Function
) - User Function

A-2

0/0

II

$

SPACE

ASK/TYPE CONTROL CHARACTER TABLE

Format delimiter

Text delimiter

Carriage return and line feed

Carriage return on Iy

J (Carriage Return)

Type the symbol table contents

T ermi nator for names

Terminator for expressions

Terminator for commands

Terminator for lines

A-3

Code

*?OO.OO
*?01.00
*?02.07
*?02.24
*?02.28
*?02.29
*?02.44
*?02.46

*?02.61
*?02.67
*?02.80
*?02.87
*?02.;0
*?02.;3
*?02.;7

*?03.1O
*?03.42
*?03.50
*?03.79

*?04.12
*?04.13

*?04.18
*?04.33
*?04.39
*?04.45
*?04.53
*?04.61
*?04.93
*?04.;0
*?04.;2
*?04.;9

*?05.11
*?05.28
*?05.60
*?05.;6

APPENDIX B

ERROR DIAGNOSTICS

Meaning

Manua I start from console
Interrupt from keyboard via CTRL/C
Bad line number format
Keyboard input buffer overflow
Group number or literal too large
I II ega I command used
Line number too large
Imaginary square roots, or nonexistent line

referenced by DO
Nonexistent group referenced by DO
Bad argument for MODIFY
Di vi si on by zero
Command input buffer exceeded
I II ega I st ep number
Number too large to be made an integer
III ega I or mi sspe II ed functi on name

Bad argument for ERASE
Log of zero requested
Improper step number
Variable storage exceeded, or exponent not a

positive integer

Bad argument in IF command
Missing operator in an expression, or illegal E

format on input or literal
Bad argument in FOR, SET, or ASK
Operator missing before parenthesis
Error to left of equal sign
Parentheses do not match
Excess right parenthesis
Illegal character in FOR
Double periods in a line number
Function not followed immediately by parens
Multiple periods in a line number
Double operators in an expression

No argument in IF command
Command not avai lable
Error in FOR command format
Functi on not loaded into core

NOTE

The above diagnostics apply only to the version of FOCAL,
1968 issued on tape DEC-08-AJAB-D.

B-1

APPENDIX C

TO SAVE BINARY OF INITIAL DIALOGUE

1. Load FOCAL and FLOAT;

2 . start at 2¢¢;

3. type CNTl-C and "Erase All";

4. read in init -dialogue program (Dialog);

5. load JR46;

6. start at 46¢¢;

7. type T;

8. turn on the punch {low speed);

9. wait for leader-trai ler;

10 . stop computer, turn punch off;

11. restart at 46¢¢;

12. type 144; 144P;

13. turn punch on, hit continue;

14. when punching stops, turn punch off;

15. type 165; 165P;

16. turn punch on I hit continue;

17. when punchi ng stops, turn punch off;

18. type 3240; 4276Pi

19. turn punch on, hit continue

20. when punchi ng stops, turn punch off;

21. type "E";

22. turn punch on, hit continue;

23. When some leader-trai ler has been punched, stop the computer:

24. You have punched the binary of the initial dialogue.

i .e. , C(BUFR) I C(LASTV), and C(FRST to C(BUFR)) .

For generating the Error Diagnostic Codes

NOP-Iocation CHINX-1 (2475)

C-1

APPENDIX D

FOCAL CORE LAYOUT-USAGE

Free Used Mnemonics What

0 ZERO

173

2 0200 START FOCAL PROPER
3251

13 3252 BUFBEG BUFFER AREA
4377

/J 4400 BEGIN INITIAL DIALOGUE
4577

4600 FEXP
4775

2 (BET 2+ 3)
5000 ARTN
5166 EXTENDED

11 (FLAG 3 +1) FUNCTIONS
5200 FCOS
5365

12 (FLOA + 11)
5400 OUTPUT
5576 CONVERSION

(TEMPO + 1)
5600 DECONV
5752

25 (INFIX + 5) INPUT -
6000 FLOUTP OUTPUT
6175 ROUTINES

2 (OUTOG+4)
6200 FLINTP
6315

62 (P43+ 1)
6400 FPNT
6576

FLOATING-POINT
6600 ACMINS INTERPRETER
7355

22 (RAR 1+1)
7400 DNORM
7556

21 (BUFFER + 10)
7600 BINARY LOADERS
7777 (RIM)

D-1

FOCAL CORE LAYOUT - DETAILED

Page 0 - Field 0

* 001

*200

IIGETLN
* 400

*600
*1000
*1200
*1400

*1600

*2000

*2100

*2200

*2300
*2400

*2600

*3000

Miscellaneous
Numbers
Floating-Point Working Area
Constants
New Instruction Pointers
Variables

START

Command/I nput
Line Read Routine
1001 Routine
Push-POP Routines
'GOTO ' and WRITE I and Misc.
'IF ' , IISET II , 'FOR' and Misc.
lASKI, 'TYPE ' , 'MODIFY'

IIGETARG II - Recursive Routine
IISPNOR II , "TESTN", IIPOPJ"
'RETRUN '
IIEVALII - Recursive Routine
OPNEXT - read operator
ARGNXT - read operand
ETERM - evaluate terminator
FLOP - floating operations called
ENUM - number processor
EFUN - function processor
E LPAR - left parens processor
EFUN3 - function returns
IIDELETE" - Recursive Routine
DOK - group delete
DONE - garbage collection
IIFINDLNII - Normal Routine
Fi nd exact match or next larger
'ERASE ' command processor
IIGETCII - unpack text and trace
"ENDLN", IIPRNTLN"
I/O Subroutines
Command Buffer
Interrupt Processor
ERROR Processor
IIPACKC II - pack text
Rubout routine

0-2

*3220 I/o Buffer
*3240 T ext Buffer Begi n

T
E
X *4400 - Once-On Iy Code
T SELF-START
/ TEST ARITH
V TEST EAE
A TEST X-MEM
R CLEAR ALL FLAGS
I TYPE MESSAGE
A
B
L
E
S
;.
:/
P
U
S
H
D *3600 ODT -JR (for X-FUN)
o *4000 ODT -JR (standard)
W *4600 ODT -JR (for dialogue)
N

L
I
S
T

Floating Point Routines

*4600 Extended Functi ons

*5400 I/O Controller

*6400 Basic

*7600 Binary Loader
or 8-SYS LIB Bootstrap
or Disk Bootstrap

*7756 Rim Loader

End of Field ZERO

Field ONE
Extended Text Storage

D-3

FOCAL CORE LAYOUT - DYNAMIC STORAGE

FOCAL CORE LAYOUT

0000
PAGE ZERO

A~ ~ FOCAL

A II
C

77 15 :
A N T ..

S EXP

S
FREE

PUSH A : PUSH J :
PUSH F

4600

EXTENDED FUNCTIONS
5400

FLOATING -POINT PACKAGE

LOADERS
7777

0-4

AUf) :, 1': ~ UlJi~
ALIST 14. 6 HlIN2
A R (;!~)(T 1716 FF"U1\i3
ASK 1 ? 141 EFlII\l31
AHS 4476 Elf) AR
ATLlST llf.4 PW
ATSw ('1 4 1 E,\lOU"
AX I 1'/ ('01~ E I\jOT
AXOUT ~i 01 7 ENU~l

BEGl~J 44vi (. [PAR
HELL 0066 EP.AR2
AFX 4553 ERASE
AFXX 4552 ERG
AOTTOM vH127 EHl.
BOx ?516 ERR()R2
BuFBfG 3252 ERROR3
BUFf.< ~~ 14 4 ERRor;4
CCR (107 i' ERRORS
CDF nn ERR2
CFRS 1103 ERR3
CHAR 0152 ERR4
CHII\4 2467 ERRS
CHINX 2476 ERV
CLF ?0~7 ERVX
CNTR Pl142 ER5
COL 1266 EseA
COMBaT 0225 ETfR~

CO~BU~ 0102 ETF: RMt~
COME 1,\1 ?522 ETFR'11
COMGO 117~ ETER~12

CQMLST 0757 EVAL
COMfvJF ,\j 1'1610 EX IT
COMOUT 26V5 EXTf<
CSTAR 02<'4 FCOrn
C100 0~hlO FEI\Iu2
C140 3~15/) F£N03
C20k1 ~016 FOP
C260 re~:s F I tJ C R
Cll r?077 FINDLN
DCOf\lT v'4f.3 Flf\wN
OOTJR r.0(J'4 FINFIN
OfRGSW PH1 FINPUT
DECO"" 5622 FISw
DE.ep 1'1 4 3 rue
OEIE.iC ?O.s FLARG
OGRP ('4;:;4 FLARGP
OGRP1 ',1433 FLARG2
Dt'lPSw ('i1" 2 FLIMIT
00 «417 FL Ir"TP
DUK 2113 FLIST1
DO""t ;:'131 rLIST2
ECHOL~ 2374 FL0P
EFnp r'141 FLnuTP

APPENDIX E

SYMBOL TABLE

1.736 FLTONE.
1747 FLTXR
204k1 FLTitH
~'106 FNPT
1766 PH ARF
\'1104 PIT AAL
4525 FOR
0F' 5 FOUTPU
1725 FPNT
17e3 FRST
1770 FRSTx
2203 GEt\iD
2224 GETARG
2221 GETC
4534 GETLN
453~ GETVAH
4536 GETl
2737 GET3
2743 GExIT
2723 CfF\,/Ol
?731 CINe
2735 -QL1l T
?216 GON
2237 COTO
4551 GHPTST
3110 GSERCH
1642 GS1
:1.637 GS2
1616 GS3
1650 GS4
1602 GTEM
2652 It:JAR
2317 IF
1111'2 IF 1
2271 IF2
?272 IF3
4M~f. IGNUR
106b I LI ST
4524 lLISTA
2247 lLISTl
1137 Ii\jRUF
(! ty) 1 I ,'oj n f. v
0051 INLIST
0044 I:\lPUTX
0171 INSU8
~l170 INTlG[
1142 INTI-IPT
1076 IORuF
/'\2(10 IRfHJ
~)601 133
0576 LASTLN
16fl7 LASTOP
60;'0 LASh'

E-l

2366 LCO~ 0313
Ill;) 1, 5 LlBIHR 2731
231~) Ll N£ \10 01'53
45') r; LlSTGO 1402
21374 Ll STN 1566
?ln5 LlSl,3 !1k'lltJ
hl41 Ll 5T6 "1064
r.l~)fJ LOOKUP 4571
6400 LPRTST 2061
324~ L2 1321
3250 LeA 45H
2340 L8U 4541
1417 L8AY 4546
451'+ LeR 4545
4523 MASK ~"'26
1423 M~RE.AK 2601
2334 MeR e'073
2351 MEn 1136
"357 Mr tlI604
1521 MfLT Ql0H
0154 MINSKI ~053

1413 Ml~USA ~035

0234 MOO I F"Y 13~1

"605 MOV1 3113
0745 MPER 1546
1442 104180 "'072
1461 1'411 ",o76
1501 M12 l'I014

.,

1463 M137 2365
1476 M140 3047
("1021 M2 eleJ4
0211 M2'~ el02S
1011 "1240 1545
1':'37 M340 3~76
H'l15 M4e1 2364
112126 M5 12!~75
0216 M77 1ZJ023
U02 NAGSWl 0151
;, 7 7 7 NOT!N 2377
HH":i ONE 0455
;;>6(,6 DOUT 454~

[-1150 OP 3176
~571 OPNExl 2060
0256 OP~JEXl 1611
("03e· OPTABL 1724
"0'2 OPTA8S U21
26h opn, I 266,
322i OPTRO 26661
!~226 OPTRQI 266~

2516 OUT 2477
'116C OUTC~ 2512
014~ DUTOEV 0147
1J1165 OUTL 2157

nun. ~~11 RTLb 4-;?r) Tl 01/)6
01 4557 RIJ8: .L~1 I T2 ~16-'

or. 4?~/:: RuH,~ :h)44 UTE 2.3~' ?
a,s 4,b .. R,jr~s .h13.~ Ulr) ~31l

04 444 .. RIJ~q 304;'; UTR 1\ 23 111 (,

0, 456~ SI\VI.C ? 6('''' UTX 2322
06 4560 SAVU< 21)'1 ~ VAL 2467
P C~~~ S8A" 13.~1 WAI_L ~667

PACI:Wf ~057 SCO,jl 131/) wORLlS 'HJit!!,~
PACI"-C 4515 SI:.T 1041 WR ITF. 0630
PAGI\ST Vi163 SEX 1375 WTESTG 0672
pA(~>- 31V!6 SExc; fl741 WTF.ST2 ~65b

PC 015? s~nu\Jf1 1334 WX 0674
PCH~ 051\'1 Si..,(n 104J XA8~ 203!)·
PCKl 3113 SIN 21(15 XAOC 3203
PC1 (~6! t SJ '~1t6 XCT 0020
Pul)l.R C'I ~:J13 SURrR 1347 XCTIN 0146
PUP 456~ S.)Q1C 4517 XOXS 115~

PUPtl I 457k SORTGI4 t1137 X:JVS 1140
PUt' ~1535 SOR1J 451" XE~i1U·~ 2401
PiJ3 0!)55 SPLAT 305.~ xr 4561
PEn 126, SP~HH~ 4521 XF" II'lO 2242
PE.R ('1022 S~rTI\I 134~ X(i[TLtJ ~304

POP/. 1413 SRNLST 137" XINT 1156
POPf 4513 STAiH rl177 X133 2667
POPJ 55H' STAiHv' ~\14 <+ Xr>1 4!;63

P~'NTC 45?~· SJqs 1535 XOUTL 2677
PRNT 243~ T 0iH'L1 XPOPJ 1.563
PRN T Li'l 4522 TASK 121.0 XPR\lT 2421
PI·HH~ 317~ TAS,,4 1257 XIJIJ;jHA "477
PHOC 0613 TCRLF 12~" XPUSHJ "'521
P~OCF5 Viole:: TCRl.F2 126 ... X,H~ 3205
PT j 016<+ TUlli<lP 3130.; XiH 911111
PUSh/\ 4511 H.l.::i\~ 26bd XRTL6 ~ .. 12
PUSHF 4512 TERi-IS ?0CH X~T2 Vl012
PuSHJ 45n TESTA (132 ~ XSG-l 2.,27
P13 0Iic10!:l TESTe 4:;3.5 XSOriTG ;'1722

PH O~;31 TESP~ 453 I XSP,'lnR 15J.3
P177 ~1!1?6 TE.XTP ()I .. ~11 XTESTC "I '12-
P2 (1061. TGRt->2 ~47 ... XTESTi~ 1547
P'(,71 ~03G Trl I 5L,~ ~, 15 0 XT3 "720
P,3 rW33 THISOP rl~U XI'i 4554

P331 ~H:l" " TPlT 263,; X..,1 4555
PS77 305, T 1 tJTi-? !.?"., Xw:> 4550
P4 C~ 3~154 TL.IST 1 .. 1·, XYf: 2447.
P7 4567 TLt:>T2 14? ;1

Pl1,I:\'I: ('1102 .. TL 1ST 3 l4 :1"

P7hll 0072 TI~I.lU T L~46

RAhYT 3211 T~l ~H:~2

RtAUC 4521 TST~RP 45~2

Rt.r.UV,\ '?757 T:)TLPR 4?;~ J.

Rl TUR'~ l.,bJ T ,(Pt. tc?b

RuT 3131t? T'fPt ::> 12411

E-2

APPENDIX F

FOCAL SYNTAX IN BACKUS NORMAL FORM

<immediate command>: : = <program statement> C.R.
<i ndirect command> : :=<1 i ne #> <program statement> C . R.

<line #>:: = <group no.>· <line no.> I <variable>*

<group no. > : : = 1-1 5 I 01 -15

<line no.>: :=01-9911-9

<program statement> : : = <command> I

<command> <Space> <arguments> t<command string> I

<program statement>;<program statement>

<command> : : = WRITE I DO I ERASE I GO I GOTO

<argumeOnts> : : = ALL I <Iine#> I <group no.>

<command string> : : = <type statement> I <library statement> t

<Ask statement> l<If statement>
<Modify statement> I <Set statement>
<For statement> I QUIT, RETURN I COMMENT I CONTINUE

<Set statement> : : = SET <Space> <variable> = <expression>

<For statement> : : = FOR <Space> <variable> = <expression>,

<expression>, <expression>; <program statement> I

FOR <space> <variable> = <expression>, <expression>;
<program statement>

<If statement> : : = IF <space> «expression» <line #>; I

IF <Space> «expression» <line #>, <line #>; I

IF <Space> «expression» <line #>, <line #>, <line #>

<Ask statement>: : = ASK <Space> <Ask arguments>

<Ask arguments> : : = <operand>, <Ask arguments> I

: <Ask arguments> I #<Ask arguments> I % <format code>,<Ask arguments>

" <character string>" <Ask arguments>t<null>I

<operand> <Space> I $

<format code> : : = <tine#> I <null> I <group no.>

<library statement> : : =

LIBRARY <Space> <Library Command>

<Space> <file descriptions>

_______ <_L_ib_rary Command> : : = CALL I SAVE I DELETE I LIST

* Not yet implemented.

F-1

<file description> : : =

DAT A <space> <data I ist> I

FILE <Space> <File name> I

FILE <space> <File name> i <program statement> I

SYSTEM <Space> <File name> I

SYSTEM <Space> <File name> : <program statement>

DATA FILES SYSTEMS

<File name> : : = <character string>

<data list> : : = <variable> I <variable>, <data list>

<Type statement> : : = TYPE <space> <Type arguments>

<Type Arguments> : : = <Ask arguments> I <expression>

<Type Arguments>, < Type arguments>

<Modify statement> : : = MODIFY <Space> <line #>

This command is then followed by keyboard input
characters defined as <search character>

plus

<null> I <character string> I <control character> I
<character string> <control character>

<control character> : : = <Search character> I

[belll, [formll[line-feedl ,C.R. I

C 1 , - 1 [rub-out 1
<Variable> : : = <letter> I <letter> <character>

<Variable> <not space> <subscript>

<Subscript> : : = <left paren > <expression> <right paren>

<operand> : : = <variable> <constant> I <subscript> I <function>

<left paren> : : = < I (I [

<right paren> : : = > I) I 1
<expression> : : = <unary> <operand> <operand>

<expression> <Operator> <expression>

<unary> : : = + l-

<operator> : : = f 1* I / I + I -

<Function> : : = F <function code> <subscript>

<function code> : : = SIN I COS ILOG IATN I EXP I
SQT I ADC I DIS I DXS I ITR I
ASS I SGN IRAN I NEW I

F-2

<character string> : : = <null> I <character> <character string>

<character> : : = a-z I <digit> I <special symbols>

<digit>: : = 1-9 I ~

<terminator> : : = <space> I I I i IC.R.

<not space>: : = <null> I <character>

<special symbols> : : = & I' I: I @

<leader-trailer> : : = @ , [200 1 ,<null>

<Space> : : =

Note: spaces are ignored except when required.

F-3

APPENDIX G

NOTES: EXPLANATION OF NAGSW

G.1 NOT ALL OR GROUP SWITCH

Since LINENO may be modified, a record is needed of whether a specific line number was

given by

XX.YV

Where XX and YV are nonzero or whether a group was indicated by

XX or XX. or XX. yy

Where YY = 51
or whether lIali ll text was indicated by either zero, less than one, or a non-numeric argument:

For one line

For a group

For all text

NAGSW =

4000

0000

0001

Code for testing NAGSW:

Skip if

or or
ONE

ALL

GROUP

SNASNA

SPA~SPA~
SZA SNA SZA

G.2 EXPLANATION OF DATA INACCURACIES

IIFrom the inequality 108 < 227, we are likely to conclude that we can represent 8-digit

decimal floating-point numbers accurately by 27-bit floating-point numbers. However, we need 28

significant bits to represent some 8-digit numbers accurately. In general, we can show that if Hf<2Q- 1,

then q significant bits are always enough for p-digit decimal accuracy. Finally, we can define a com

pact 27-bit floating-point representation that will give 28 significant bits, for numbers of practical

importance. II 1

1 Goldberg, B. 118-Digit Accuracy II ,
Communications of the ACM
Vol. 10, No.2, February, 1967

G-1

H .1 THE STANDARD FUNCTIONS

APPENDIX H

FUNCTIONS

The functions are provided to give extended arithmetic capabi liti es and the potential for

expansion to additional input/output devices. There are basically three types of functions. The first

group contains integer parts, sign part, square root, fractional, and absolute value functions. The second

group has the input/output for scope and analog/digital converter functions. The third group has extended

arithmetic computations of trigonometric and exponential functions.

A function call consists of four letters beginning with the letter F and followed by a parenthet

ical expression: "FSGN (A-B *2)". This expression is evaluated before transferring to the function

process itself.

The function FADC() is used to take a reading from an analog to digital converter. The value

of the function is an integer reading. Additional versions of the ADC function could be designed and

incorporated in the program to provide for synchronization by a clock or other means.

*SET A= FADC () *5

The scope functions FDYS (expression) and FDXS (expression) are used to set and display an

. X-V coordinate on a model 34 scope and scope interface. The DXS function only sets the value of the

X-coordinate to the integer part of the expression in parentheses. The DYS function sets the Y-coordin

ate value and intensifies the point. This makes it convenient for the programmer to set an X value and

then display as many Y points along that coordinate as desired. The value returned for each of these

functions is the integer part of the expression in parentheses. This expression is called the function's

argument.

The extended arithmetic functions are retained at the option of the user. They consume

approximately 800 characters worth of his text storage area. These arithmetic functions are adapted

from the extended arithmetic functions of the three word floating point package and are described in

the pertinent document.

An unorthodox distribution is provided in the basic package for a random number generator:

FRAN (). It uses the program itself as a table of random numbers. An expanded version could

incorporate the random number generator from the DECUS library.

H-l

H. 1. 1 Trigonometric Functions

All arguments are in radians

FSIN

Feos (
FATN (

- the sine functions

- the cosine function

- the arctangent

From these the user may compute all other trigonometric functions.

Logrithmi c Functions

FLOG(

FEXP (

Arithmeti c Functions

FSQT (

FSGN(

FABS (

FITR

- log to the base e or Naperian base.

- e to the power

- the square root

- one (1) with the sign of the argument

- the absolute va lue

- the next smaller integer part maximum of 1024

LOG 10 (ARG) = LOGe (ARG) *LOGlO(e)

LOG 10 (e) = .0.434295

LOGe (10) = 2.3.0258

e = 2.71828

1 degree = .0174533 radians

1 radian = 57.2958 degrees

H .1.1.1 Using The Arctangent - An arctan function cyc les between + 1r/2 and - 1r /2. Thus to get a

correct range for 0-21r radians from the expression FATN(Y/X) we must use the signs of X and Y.

X

+

+

Y

+

FATN ry/X)

0-PI/2

+ PI/2 - PI

PI - 3*PI/2

3 *PI/2 - PI *2

H-2

13 .01 I F (X) 13. 1, 13.02, 13. 1

13.02 SET X = 1E-200

13.1 SET THETA = FATN (FABS <V/X»
13.2 SET PI =3.14159

13.3 IF (Y) 13.4; if (x) 13.5;

13 .4 I F (X) 13.6; R

13.5 SET TH= PI-TH;R

13.6 SET TH= PI + TH; R

13.7 SET TH= - TH; R

H .2 NEW FUNCTIONS (proposed)

These functions will be available as optional patches.

H .2.1 For LAB-8

FDIS - for display

FORM: "SET Z = FDIS (X,y)1I

Where Z is a dummy variable

FUNCTION:

Setup X - Coordinate with X - value;
Setup V - Coordinate with V - value;
Intensify the point;
Return zero.

FADC - for analog to digital converter

FORM: "SET Z = FADC (X)"

FUNCTION:

FOR X .GE . .0'
Set Multiplexor to A/D channel number X;
Convert and return conversi on va I ue;
Disable auto-convert flip-flop.

H-3

H .2.2

FOR X =-1

Enab Ie RC c lock and auto-convert;
Wait for ADC done flag;
Then read converter and return value.

FOR X =-2

Enable external clock and auto-convert.

FSEL -forclock, relay, SRselectionandcontrol.

FORM: "SET Z = FSEL (xl x2 x3 x4)

Where Y is an expression, and x; are digits

FUNCTION:

FOR Y = %, AND y,
FOR x3 EQUAL 1, 2, 4

Select clock:
x3: 1 = RC, 2 = Crystal, 4 = external;
Return number of clock interrupts since last
call;
Zero c lock count

FOR x2 EQUAL 1,2,4

Select relays to turn on (microprogramable):
xi 1 = R 1, 2 = R2, 4 = R4

FOR Xl EQUAL 1 turn all relays off.

FOR Xl EQUAL 2 output pulse on S%

FOR Y NOT ZERO:

The number xl' x2 ' x3 ' x4' (Octa I) is masked
(AND) with SR bits ana results returned in
decimal.

For Display YD 8/1 (Techtronics 611)

FDIS - for display control

FORM: "SET Z = FDIS (X, Y , L)"

FUNCTION: at X and Y execute the display function L:
The X and Yare coordinate values, and
L is a letter plus arguments, if appropriate:

H-4

FCUR - for cursor control

A
I
C
S
T
R
E
o

- Absolute reference
- Incrementa I
- Circle (full)
- Segment,
- Text display,
- Reset to zero
- Erase screen
- no change

ANG LE (i n 1/16ths)
T*E*X*T

FORM: "SET Z = FCUR{X)"

FUNCTION:

Return current coordinate position.
(i .e., the last position at which the
button was pushed) •

Range is +511 to -511.

FOR X EQUAL 1 return X-coordinate

FOR X EQUAL 0 return Y-coordinate

H .3 NEW COMMAND FOR FOCAL WITH DF32 DISK

a. Form.

II LIBRARY abc II

Where a = operati on to be done:

SAVE (create a disk item)
CALL (use a disk item)
DELETE (remove a disk item)
LIST (print names of disk items)

and b = type of fi Ie or data:

FILE
SYSTEM
DATA

(program text)
(in-progress core image)
(variables)

and c = file name or description:

four letter name for a
FILE or SYSTEM, and
a list of variables for DATA

H-5

b. Examples

LIBRARY CALL DATA NAME; A 1, B2, C (2) •••
LIBRARY CALL FILE NAME
LIBRARY CALL SYSTEM NAME

or
LC S NAME

LIBRARY DELETE DATA NAME Al, B2, C(2) •••
LI BRARY DE lETE FI LE NAME
LIBRARY DELETE SYSTEM NAME

or
L D S NAME

For a FI LE or a SYSTEM in a SAVE command, the command stri ng, if any, that follows

the semicolon is placed in the command buffer to be executed as a direct command when the program has

been loaded via a CALL.

LIBRARY SAVE DATA NAME; AL(I + 1) •••
LIBRARY SAVE FILE NAME; GOTO 3.4
LIBRARY SAVE SYSTEM NAME;

To list a II files of type n

LIBRARY LIST DATA
LIBRARY LIST ALES
LIBRARY LIST SYSTEMS

or
L L S

Only LIBRARY SAVE n may be followed by ;.

c. Elucidation

These command features wi II permit opti mum usage of avai lable disk storage. It wi II be

compatible with the disk "Monitor".

When a new program is called, the old one in core is erased and control is transferred

to the command buffer, thereby automatica lIy starting the program, if desired. Thus programs may link

together and branch out in complex sequences.

Common variables may be referenced by establishing common names. Those variables

saved by the LIBRARY command are stored in a FOCAL Scratch Area and may not be referenced by PIP.

FILES and SYSTEMS are saved as .USER fi les.

A program may also save itself by some conventional name such as MAIN; GO before

calling another program. That program could then return control to the original routine with

LIBRARY CALL SYSTEM MAIN. Thus, programs may be used as subroutines.

H-6

d. Raw Date

FI LE (1)

SYSTEM (2)

DATA (3)

e. Loading Procedure

144= BUFR, R
165 = LASTV, X/changed to R

2522 = COMEIN
l
2577 = COMOUT-6

3240 = FRST
l
R

Page ZERO
2522 = COMEIN
l
2577

3200 = FRST - 40
l
X

N I A

SUBSCRIPT

S EXPONENT

S MANTISSA (11)

MANTISSA (12)

(1) Load and bui Id the Disk Monitor.
(2) Add FOCAL to the system. Add LIBRARY to the system.
(3) Load FOCAL DISK SYSTEM tape

(SA = 200)
(4) Start it.
(5) The following fj les wi II be created.

FOCA.USER
.FL.X
.LT .X
FCON .SYS
REEN .SYS
.VR.X

MAIN + DIALOG
F loati ng Poi nt Secti on
Library Command Section
Latest Program
Reentrant Program
Variables

(6) It wi II then commence the initia I dia log .

f. Control - C

When FOCAL (disk version) is given a control - C it wi II save itself as FCON .SYS and

return control to the Disk Monitor. He could then resume where he left off by typing

.FCONT ,;

and the program will continue. If he wishes to restart FOCAL, retain his FOCAL text and to go into

command-input mode, he may type

.REENTER,;
*

H-7

g. Currently available, on an experimental basis only, are an 8K version of FOCAL, a

two user system, a patch to uti lize the Ca IComp plotter, and a patch to uti lize the high speed reader.

The latter is implemented as a command: **; or ** {return}. When the * command is

executed the interrupts are disabled, echo is disabled, and ~ input is taken from the high speed reader.

This input may be commands, program text, or data. All output is presented to the high speed punch.

An * command on the tape will cause all interrupts, echos, and input device pointers

to be restored. Out of tape condition wi II generate the same result. A user without a high speed reader

will, therefore, not get into trouble by using the * command. This also means that several programs

may be linked together via the reader.

A user without a high speed punch wi II get hungup!

H-8

APPENDIX I

PROGRAM LISTS

I NEW INSTRUCTIONS:

PUSHJ = JMS I • IRECURSIVE SUBROUTINE CALL
XPUSHJ

POPA = TAD I POLXR IRESTORE AC
POP J = JMP I. ISUBROUTINE RETURN

XPUPJ
PUSHA = JMS I • ISAVE AC

XPUSHA
PUSHF = JMS I. ISAVE GROUP OF DATA

PD2
POPF = JMS I. IRESTORE GROUP

PD3
GETC = JMS I. IUNPACK A CHARACTER

UTRA
PACKC = JMS I . IPACK A CHARACTER

PACBUF
SORT J = JMS I. ISORT AND BRANCH ON AC OR CHAR
SJ, SORTB
I NUMERICAL LIST - 1
I ADDRESS LIST - NUMERICAL LIST
SORTC = JMS I. ISORT CHAR

XSORTC
PRINTC = JMS I. IPRINT AC OR CHAR

OUT
READC = JMS I. IREAD ASR - 33 INTO CHAR AND PRINT IT

CHIN
PRNTLN = JMS I . IPRINT C (LINE NO)

XPRNT
GETLN = JMS I. IUNPACK AND FORM A LINENUMBER

XGETLN
FINDLN = JMS I. ISEARCH FOR A GIVEN LINE

XFIND
ENDLN = JMS I L IINSERT LINE POINTERS

XENDLN
RTL6 = JMS I. IROTATE LEFT SIX

XRTL6
SPNOR = JMS I. IIGNORE SPACE AND LEADING ZEROS

XSPNOR
TESTN = JMS I. IPERIOD: OTHER: NUMBER

XTESTN
TSTLPR = JMS I. ISKIP IS 5 < SORTCN < 11 (I.E. AN L-PAR)

LPRTST
TSTGRP = JMS I. ISKIP IF G(AC) = G (LINENO)

GRPTST
TESTC = JMS I. /TERM; NUMBER; FUNCTION; LETTER

XTESTC

1-1

ERROR2 = JMS I
ERR2

ERROR3 = JMS I
ERR3

E RROR4 = JMS I
ERR4

/EXCESS SOMETHING ERROR

/MISCELLANEOUS ERROR

/FORMAT ERROR

1-2

momoama

DIGITAL EQUIPMENT CORPORATION. MAYNARD, MASSACHUSETTS

