FINNING COMPUTER SERVICES LTD.

HEAD OFFICE: 555 GREAT NORTHERN WAY, VANCOUVER, B.C. V5T 1E2 • PHONE (604) 872-7474 • TELEX 04-508717 • CABLE ADDRESS "FINTRAC

Finning BCPL System
Reference Manual

Tenle of Contents

Fart J The ECFL Larssase

2.74 SECTION eng NEEMS directives2.8 The rum-time librars
2.81 Easic Irifut-Dutfut routiries
2.82 Other useful subroutiries3. ECFL on the Nova … an overview
3.1 Comeilation
3.11 Library declarations
3.12 [liagnostics
$3 \cdot 13$ Compilation oftions
3.2 Execution
3.21 Lozdins
3.22 Execution faults
3.23 A demoristration frosram
Fiart II The ECFL User's Marual
4. How to $\lrcorner s e$ BCFL on the Nova
$4 \cdot 1$ Simple use
4.11 Global oftions
4.12 Local oftions
4.13 LINKECFFL
4.2 Stases of comfilation
$4 \cdot 3$ ComFilins
4.31 Global oftions
$4+32$ Locel oftions
4.4 Cross-reference listins seneration
4.41 Local oftions
4.5 Coge seneration
4.51 Global oftions
4.52 Locel oftions4.53 Code semeration error messases
$4 \cdot 6$ Assembly
4.61 Assembly error messases

```
    4.7 Loedims to a save file
    4.71 Load error messases
    4.72 Loedins with overless
5. Code Generation
    5.1 TyFes of code semerators
    5.2 Code for oferators
    5.21 Fllus ando mimus
    5.22 MultiFlication
    5.23 Livision anis remainder
    5.24 Shifts
    5.25 Losicel oferations
    5.3 Characters and strin#s
    5.31 Characters and escafes
    5.32 Strins refreseritation
    5.4 Indirection and adriress oferators
    5.41 Indirection
    5.42 Addresses
6.
    6.1. Store 13=0ut
    6.2 Fesister allocation
    6.3 Stack lasout
    6.4 Global locations
    6.5 Starmard declerations
    6.6 A machine code subroutime
    6.7 Collirus BCFl. from machire code
7. The Star|erd Fimmirıs Library
    7.1 Library limkase
    7.2 Easic routimes
    7.21 STAFIT
    7.22 STOF
    7.23 GETEYTE ERG FUTEYTE
    7.24 F'ACN゙STFING amם UNFACK゙STFING
    7.25 LEVEL, LONGJUMF: 3n'g AFTOUEC
    7.26 GETUEC arin FUTUEC
    7.27 SYSTEM
```

7.28 SFecial－wrfose besic routimes
7．3 Character（stream）I／0 routiries
7．31 FINLINFUT ario FINLOUTFUT
7．32 SELECTINFUT and SELECTOUTFUT
7.33 CH，INCHAN，arid OUTCHAN
7.34 INFUT anロ OUTFUT7.35 FEWINI7．36 ENDFEAL，ENLWFITE，arid ENITOINFUT
7.37 FIIICH arid WFiCH
7.38 UNFEICH
7.39 NEWLINE and NEWFAGE
7．4 Formatted（stream）I／0 routimes
7．41 WFITEEI arid WFITEN
7.42 WFITEOCT and WFITEO
7．43 WFITEHEX and WFITEH
7．44 WFITES
7．45 WFITEF
7．46 FEEALINUMEEFI anG FEEALIN
$7+5 \quad$ Firlos $\mathrm{I} / 0$ routiries
7.51 OFEN anロ CLOSE
7.52 IELETE a \quad TID FENAME
7.53 GETE，FUTE，GETC，CONSOLEIN，CONSOLEOUT
7.54 FUTEACK enid FLUSH
7．55 EYTEFEAL and EYTEWFITE
7．56 ELOCN゙FEALI and ELOCN゙WFITE
7． 57 GETFOSITION arid SETFOSITION
7.58 LINEFEALI and LINEWFITE7.59 CHANGEFHASE
7.6 Multitaskins routirues
7．61 TASK
7．62 XMIT，XMITWAIT，ario FEECEIUE
7.63 IIELAY
7．64 FFFIOFITY
7.65 SUSFEND ERIG FEALIY
7．7 Timins routines
7.71 MATE arid TIME：
7.72 ELAFSEIITIME
8．Lebussins Facilities
8．1．Stenderd ロebussins facilities
8.2 Error returris
$8 \cdot 3$ The ABOFT routine
8.4 The FOSTMORTEM routine9. Special Facilities
9.1 Overlas routine
9.11 Freaarins the overlas sections9.12 Loadins the overlass
9.13 Usins the overlass
9.2 System call function
9.3 Arsument infult functions
9.4 Network I/0 function
9.5 Extended library functions
9.51 Strins manipulation
9.52 Time routine
9.53 Iouble erecision arithmetic
9.6 The "Q" library
Fart III … AFFeridices
A Basic sumbols and sumonims
E ASCJI character codes
C Stanosro library header
II Extended librars header
E ECFL runntime error messases
F Librers modules

BCFL is a frosrammins lansuese desjsned frimarils for mominmmerical afflications such as comfilerwwritins arid serieral sustems frosrammins. It has been used successfully to imflement comfilers, interfretersg text editors, same flasins Frosramsy and oferatins sustems. The BCFL comfiler is written in ECFl.. arid rums on a wide variets of machimes includins the IEM $360 / 370$ series. This document describes the imflemeritation available on the Iata Gerieral Nova series frocessors at Firınins。

Some of the distirsuishirs features of BCFL are:

The suntax is richs allowins a variets of wass to write conditional brenches, loows arid subroutime definitions. This allows one to write auite readable Frosrams.

The basic data object is a word (16 bits on the Nova) with ro Farticular disfosition as to ture. A word mas be treated as a bit-matterrig a rimmberg a subroutine entrs or a label. Neither the comfiler nor the rum-time system makes aris attemft to enforce tufe restrictions In this resfect ECFL has both the flexibility and ritfalls of machirie lansuase.

Manifulation of Fointers ano vectors is simple ario straishtforward.

All subroutiries mas he called recursivels.

This marual is rot interided as a frimerg the constructs of the lansuase are fresented with scant motivation and few examfles. To use ECFL most effectively or the Nove orie shojld have a sood understandins of how the machine works arid be familiar with its oferstins ssstem. To the ewferienced and disciflined erosrammer it is a Fowerful and useful lamsuase but there are few =rovisions for the frotection of maive users.
\qquad

2 L.ensuese Ilefiriition

2.1. Frosram

At the outermost level, a ECFL frosram consists of a secuence of declarations. To mriderstarid the mearims of a frosramg j.t is mecessary to understand the mearims of the more basje construets of the larisuase from which it is made. Weg therefore, choose to describe the larisusse from the inside out startins with one of the most basje constructs: the 'element'.
2.2 Elemerits

Celement: $:=$ ©identifiers \backslash rumbers TRUE \backslash FALSE \? strins constants \character coristants

An identifiers consists of e secuence of lettersg disits, Feriods, and umoerlines, the first character of which must be a letter.

A riumbers is either an inteser consistins of a sequence of decimal disits, arioctal constent consistins of the symbol '办 followed bs octal disits, or a hewadecimal comstant consistins of the character fair \#X follower bs hexadecimal. бisits. The reserved words TFUE and FALSE denote - 1 arid 0 resfectivels (on $s 2^{\prime \prime}$ comblement mechires aridere used to represent the two truth values. The symbol '?' mas be used answhere in an expression when mo sfecific value is reguiredy 3s jm_{H} :

LET OF, $A=?, ?$
A <strins constents consists of uf to 255 charecters enclosed in strins quotes ("). The interrial character set is striffed AscII (on the Nova). The character a mas be refresented orils bs the fair *" and the character w car only be refresented bu the Fair **, Other characters mas be refresented as follows:

*N	is newline
*C	is carriase return
*T	is horizorital tab
*S	is sFace
*E	is becksface
*F	is newFase

(These are considered stariardi adoitiorial escafe sequences are described in section 5.31)

Within a strims, the sequerice

```
* rnewlimes [ G&aces \ <tabs ] *
```

is skiffed．Thusy the strins
＂THIS STFING＊
＊CONTAINS NEWLINES＊
＊ANI SFACES＂
is frecisely equivalent to
＂THIS STFING CONTAINS NEWLINES ANH SFACES＂
The machine refresentation of a strins is the adriress of the resion of store where the lensth and characters of the strins are facked．The Fackins and urifackins of strinss mas be done山sins the machine defendent library routiries FACKSTFING and UNFACKSTFING，amgimdividual characters in a strins can be accessed arid ufdated usins the librars routiries geTEYTE and FUTEYTE（see section 2．82）．

A．character constants consists of a sinsle character enclosed jin character auotes（＇），The character can be refresented in a character constant only by the fair＊＇。 Other escafe coriveritions are the same as for a striris constant．A character constant is risht justified in a word．Thus＇A＇$=65$（on the Nova）．

2．3 Expressions

Eeceuse an inentifier has rio tume information associated with it，the ture of an element（and herice an exfression）is assumed to match the type reauired by its context．

All expressions are listed below．El，E2 and E3 refresent arbitrers expressions exceft as roted in the descriftions which follow the list，and kio，k al and $\mathfrak{k} 2$ refresent constant exfressions（whose values can be determined at comfile timé see section 2．38）．

Frimery elememt
（E1）
furiction eall E1（）
E1（E2，E3，．．．）
adのressiris
E1！E2
CE1
subscriftims
！E1
adoress serieration indirection
arithmetic
E1＊E2
E1／E2
E1 FEM E2 inteser remainder
$E 1+E 2$

Sefinition in section 2+66y ano the UALOF expression will be described with the FESULTIS command in section 2.55.

2.31 Adoressins oferators

A Fowerful Fair of oferators in BCFL are those which allow one to serierate and $u s e$ adoresses Ari adoress mas be manifulated usins inteser arithmetic and is indistinsujshable from an inteser untill it is used in a context which reaıires an adoress, If the value of a variable x is the adoress of a word in storaseg then $X+1$ is the address of the next word.

If U is a variable, then associated with U is a sinsle word of memorsg which js called a cell. The coriterits of the cell is called the value of V and the address of the cell is called the adoress of V.

Ari adoress mas be used bs afflyins the indirection oferator (!), The expression IE1 hasp as valueg the contents of the cell whose edrress is the value of the expression El. Only the low-order 15 bits of El are used (on the Nova).

Ari adreress mas be sererated by means of the oferator 0 . The expression @E1 is onlyvalidif E1 is one of the followins:
(1) Arı igentifier (riot declared bs a manifest declaration), iri which case UV is the address of U.
(2) A subscrifted expressiong in which case the value of QE1!E2 is E1+E2.
(3) An indirection expressiong in which case the value of e!E1 is E1.

Case (1) is selfoexplametory Case (2) is a conseguence of the way vectors are defined in ECFL. A vector of size nis a set of $\mathrm{r}_{1}+1$ contisuous words im memory rimmbered $0,1,2$ g *. . r_{1}. The vector is identified bs the adoress of wordo. If U js an joentifier associated with a vectorg theri the value of V is the adoress of word of the vector.

The value of the expression V!Ei is the conterits of celu rumber E1 of vector V, as one wouldexfect. The adraess of this cell is the valle of $V+$ El. herice

```
Q(V!EJ) = U +EI
```

This relation is true whether or rot the exfression v!Ej hafeeris to be validg and whether or not V is an identifier.

Case (3) is a consequence of the fact that the oferators a and! are iriverse.

The interfretation of $1 E 1$ defends on context as follows:
(1) If it affears as the left-harid side of an assisrment statement, e.s.
! E1: $=E 2$
E1 is evaluated to froduce the address of a cell and E2 js stored in it
(2) $0(!E 1)=E 1$ as noted above.
(3) In ans other context E1 is evaluated and the conterits of that valueg treated as an adiressy is t.aker.

Thusg the ! oferator forces one more conteritswtatins than is normally demarided by the coritext.

As e summarizins exambleg consider the four variables Ag Eg C and 0 with initial values eC, dig 5 and 7g resfectivelu. Theng after the assismment
$\mathrm{A}:=\mathrm{E}$
their values will be eII, (OI, 5y 7,
If, iristesof the essisnmerit
$A:=!E$
had been executed, then the values would have been $7,0 I y$ g, 7.

Finally, if

$$
!A:=E
$$

had heen executed, then the velues would heve been dCy efr (all, 7.

Note thet.

$$
\mathrm{QA}:=\mathrm{E}
$$

is mot mearimsful. since it would call for chansiris the adriess associated with Ag arid that association is Fermerient.

2.32 Arithmetic oferators

The arithmetic operators *, /, FEM,,+- , and ABS act on 16 bit Quantities (on the Nova) interfreted as intesers.

The oferators * and / denote inteser multiflication and division. The oferator FEM sields the inteser remainder after dividins the left hand oferand bs the risht hand one. If both oferands are fositive the result will be fositive, it is otherwise implementation defendent (but both remainder and dividend have the same sisn on the Nova).

The oferators + and -- mas be used in either a monadic or diasic context and perform the afrofriate inteser arithmetic oferations.

The monadic oferator AES sields the absolute value of an inteser number.

The treatment of arithmetic overflow is undefined.
2.33 Felations

A relational oferator comares the iriteser values of its two oferands and yields a truth-value (TFUE or FALSE) as result. The oferators are as follows:

$=$	equal
$=$	not equal
$=$	less than
$=$	less than or equal
$=$	sreater than or equal

The oferators $=$ and $=$ make bitwise comparisons of their oferands and so may be used to determine the equality of values resardless of the kind of objects thes refresent.

An extended reletional expression such as

$$
' A \cdot=C H=' Z^{\prime}
$$

is eruivalent to

$$
{ }^{\prime} A^{\prime}=C H \quad \& \quad C H \&=Z^{\prime}
$$

Note that the expession between the two relations mas be evaluated twice!

2.34 Shift operetors

In the exfression E1 < E2 (E1 > E2), E2 must evaluate to zield a nonmesative inteser. The value is El, taken as a
hit-metterng shifted left (or rjsht) bs E2 flaces. Vaceted Fositions are filled with obits.

Suntacticalls, the shift oferators have lower frecederice on the left than relational oferators but sreater frecedence on the risint. Thus, for examfles

$$
A \because 10=14
$$

is equivalent to

$$
(A \because 10)=14
$$

but

$$
14=A \div 10
$$

is equivalerit to

$$
(14=A) \because 10
$$

2.35 Losical oferators

The effect of a losical oferator defengs on context, There are two losjcal contexts: 'truth-velue' ario' 'bit' The truth-value coritext exists wherever the resulu of the exwressjori will be interfreted immediatels as true or false. In this case esch subexpression is interfretedg from left to rishty jn truthovalue context until the truth or falsehood of the expression is determimed. Then evaluationstofs. Thus, in a truthovalue context, the evaluation of

$$
E 1 \text { VE2 \& } E 3
$$

j.s as follows:

E1 is evaluatedi jf true the whole expression is trueg otherwise E2 is evaluetedi if false the whole expression is false, otherwise E3 is evaluatedit if false the whole expression is trueg otherwise the whole exeressjon is false.

In a 'bit' contexts the oferator m (NOT) causes bit-by-bjt complementins of jts oferand. The otiner oferators combine their oferanos bit-bs-bit accorgins to the followins table:

2．36 Conditional oferator
The exaression
E1－＞E2，E3
is evaluated bs evaluatins El in truth－value context．If it yields true，then the exfression has value E2，otherwise E3． E2 and E3 are never both evaluated．

2．37 TAELE

The value of the expression

TABLE K゙O，ドリッド2，\because.
is the address of a static vector of cells initialised to the
 exeressions．
$2+38$ Constant expressions

A constant exfression is aris exfression jrivolvins orise rumbers，character constants mames declared bs mamifest declaration，TFUE，FALSE，amo all arithmetic，relational， shifty losical，and conditional oferators．

2．39 Field selectors

Field selectors allow Quaritities smaller thari a whole worb to be sccessed with reasonable converience aridefficiencs．A selector js afflied to a fointer usins the oferator of（or ：i）The selector has three comborents：sizeg shift，arid offset．The size is the rumber of bits in the fieldg the shift is the number of bits between the rishtmost bit of the fielg arig the risht haris end of the word contairims itit the
offeet is the rosition of the word containins the fielo relative to the Fointer.

The erecenerice of of is the same es that of the subseriftion oferator (!), but its left oferand (the selector) must be a constent expression. A selector is sfecified usiris the oferator SLCT, whose syritax is as follows:

```
<constant exwression% : == SLCT &size>t<shift%toffset% \
                                    SLCT <size%:Ghift% \
                                    SLCT <size`
```

where sises seniftr aris coffset are comstant exfressions. Unless exflicitly sfecified, the shift and offset values are assumed to be zero. A size of zero indicates that the field exterios to the left hand end of the word. Selectors are best defined usiris manifest declarations (see section 2.62).

A selector afflication mas be used on the left hamo side of an assisnment and in aris other context where an exfression mas be 山sedg exceft as the oferand of 0 . In the assisnment

$$
F O F \cup:=E
$$

the aforofriate rumber of bits from the risht hand end of E are assigned to the specified field. Wher

F OF V
is evaluated in ans other contexty the sfecified field js extracted eno shifted so as to affear at the risht harid end of the result.

Judicious use of field selectors rather than irline shiftins (e.s., FLAGS OF WOFI rather than (WOFII! 2) 36% \& 6) will increase readabilits, and can substantialls decrease froblems in rearransims data structures or transferrins to a machime with a gifferent word size. OFrorturijties for compjler oftimization are also imfroved.

2.4 Section brackets

Blocks comeounid commands, amo some other symtactic constructions use the sumbols $\$($ arig $\$$) which are called oferins arid closins section hrackets.

A section brecket mas be tassen with a sequence of letters, digits, feriods, end uriderlimes (the same characters as are山sed iri jomtifiers). A section bracket immediatels followed hs a sface or rewlime is, irn effecty tasser with rull.

Ar ofenins section bracket can be matcined only bs an identicalls tassed closins brecket. When the comfiler finds
a closins section bracket with a monn mull tasg if the rearest ofenins bracket (smallest currently ofen section) does rot matcho that section is closed and the frocess refeats uritil a matchins ofenins section bracket is found.

Thus it is imfossible to write sections which are overlaffins (riot riesten).

2.5 Commarids

The complete set of commanis is shown hereg with E, EI, E2, and k denotins e久Fressions, C, C1 and C2 denotins commands, arid In and II2 deriotiris declarations.
routimecall E(E1, E2, ...)
E()
assisnment धleft hand side Jist := 氏expression list
coriditional IF E THEN C UNLESS E THEN C TEST E THEN CI OF C2
refetitive WHILE E MO C
UNTIL E HO C
C FEEFEAT
C FEFEATWHTLE: E
C FEFEATUNTJL E
FOF $N=E=1$ TO E2 EY K MO C
FOFI $N=E 1$ TO E2 IIO C
resultis FESULTIS E
Switchori SWITCHON E INTO COMFOHnd commandi:
trensfer Goro E
FINISH
FETUFN
BFEAK
LOOF:
ENICASE

Inscussion of the routirie cell is deferred uritil section 2.66 where function arid routine declarations are described.
2.51 Assismment

The command Fi : E2 ceuses the velue of E2 to be storea into the cell sfecified bs El. El must have one of the followiris
form：

（1）	The igertifier of o variable	cidert
（2）	A subscrirten expressjori	E3！ 54
（3）	Ar jndirection expression	！E S
（4）	A field selection expression	ドOFE3

In case（1）the cell belonsins to the identifier is urdated． Cases（2）and（3）have been described in section 2．31，arid case（4）was discussed in section 2． 39 ．

A list of assismments mas be written thas：

where Ei arid Fi are ewrressions．This is equivelerit to
E1：FI
$E 2:=F 2$

+ ＊
Eni：$=\mathrm{Fr}$

2．52 Conmitional commands
IF E THEN C1
UNLESS E THEN C2
TEST E THEN C1 OF C2
Expression E is evaluated in trutinvalue context，Commaria ci is executed if E js true，otherwise the command ca is executed．
$2+53$ FOF command
FOF $N=E 1$ TO E2 EY K゙ MO C
N must $n e$ ari identifien and k must be a constant exfression． This command will．be describeg bs showins an equivalent bloct．
\＄（
LET N，$t=E 1, E 2$ UNTIL $N \rightarrow t$ HO $\$$ ？

C
$N: N+K$
古）
\＄）
If the value of k js resative the reletion N t is reflaced Ds N \＆t The declaration

LET $N, t=E 1, E 2$
চecleres two riew cells with igeritjfiers N arin to t bejris a
new identifier that does rot occur in C. Note that the control variable N is not available outside the scofe of the commaris.

The commarid

$$
\text { FOF } N=E 1 \text { TO E2 IOO C }
$$

is enuivalent to
FOF $N=E 1$ TOE2 EY 1 NO C
2. 54 Other refetitive commarids

Commarig Cis executed refeatedly uritil coridition E becomes trie or false as implied bs the commend. If the coridition Frecedes the command (WHILE, UNTIL) the test will be made before each execution of C. If it follows the commario (FEFFEATWHILE, FEFEATUNTJL), the test will be made after each execution of C arid $s o c i s$ executed at least once. In the arse of

C FEFEAT
there js rio aoncition and termination must be bs a tramsfer or FESULTIS commarin in C. C will usualy be s comfourid commano or block.

Within FEFEAT, FEFEATBHILE, 天ח口 FEFEATUNTILy C is tBKer, as short \quad Eossible. Thusy for example

IF E THEN C FEEFEAT

```
is the seme es
```


arid
$E \%$ VALOF C FEFFEAT
is the seme $e s$

The exwressiom

VALOF C

 cslled e UAl of exfressiom It is evelueted osexecutims the commeriss（and oferleretjoms）in C until a REGUnTS commeno

FEGUTTSE
is erommtered．The exeression E is eveluatedg jte value hecomes the velue of the valof exwressior wro execution at

 क巾 णre mut oe exemter．
 temmatese orisu the immermost valof exwression comteinime t．
：\％OWTTCHON wonmemo

 Qた FEFMUT：
 wion mes woretert wjth the same velueg then execution je
 lobel．then executabn is eontjmu from thereg ana it there is moty exomition is resumen iust stter the end of the GWTTHON 世世mmenc：

The miton is imedemented ze a ojuect switche a seamential wesron or a bimers seeroh depemoins on the mumaer eno remse of wase woretante：

GOTO
FINSH
FETUFN
EFEAK
LOOF
ENOCASE

The oommanc goto E interfrets the value of E as ari andresen arid transters control to that adoressg see section 2．67．The

Gommend FINTSH ©smses an immlementation defencert termination of the entire frosram. FETUFN cemses control to return to the celler of a routine. EFEAK causes execution to be resumen at the foint just after the smellest textuallus enclosiris refetitive commarid. The refetitive commaris are those with the followiris kes words:

UNTIL, WHILE, FEFEAT, FEFEATWHILE, FEFEATUNTIL, ario FOFi
LOOF causes execution to be resumed at the foint just before the end of the hods of a refetitive command. For a FOF: command it is the foint where the control variable is incremented, and for the other refetitive commands it js where the coridition (if any) is tested. ENHCASE causes execution to be resumed at the foint just after the smallest ericlosins SWITCHON command.
2.58 Compourio commario

A comeourid command is a seruence of commands enclosed in section brackets.

```
$(C1% C2% *. $)
```

The commanis CI, C2, . . are executed in seruence.

The oferetor \because has a similar meamins to semicolon but is sumtactically more biridiris than LO, OFig FEFEAT, etc. For examfle,

$$
J F E \quad H O C 1 \quad \subset \quad C 2
$$

is enuivalent to

$$
I F E I O \$(C 1 ; C 2 \text { (} \mathrm{F})
$$

2.59 Elock

A block is a sequence of declarations followed bs a sequence of commanas enclosed tosether in section brackets.

The declarations [ily M2, . . and the commarids C1, C2, *. are exectited in sequence. The scofe of an identifier (i.e., the resion of Frosram where the identifier is krown) declered irı a decleration is the declaration itself (to allow recursive definition) the subsequent declarations arid the commands of the block Notice that the scofe does not include eardier declarations or exterio outside the block.
2.6 recjaretions

Evers identifier used irl a prosram must be declared exelicitly. There are 10 distinct declarations in ECFL:
slobal, marifest, staticg dumamic, vector, functiong routine, formal. farameter, label and for-loof control variable。

The declaration of formal farameters is covered in sections 2.66 and 2.67, and the for-loof is described in section 2.53

The scofe of identifiers declared at the head of a block is described in the erevious section.

2.61 Global

A BCFL prosram need not be compiled in one piece. The sole means of communication between sefarately compiled sesments of erosram is the slobal vector. The decleration

> GLOBAL \$(Name : constant--exfression \$)
associates the identifier Name with the specified location in the slobal vector. Thus Name identifies a static cell which mas be accessed by Neme or by ans other identifier associated with the same slobal vector location.

Global declarations may be combined.
is equivalent to

GLOEAL	$\$(N 1: K 1$	$\$)$
GLOEAL	$\$(N 2: K 2$	$\$)$
GLOEAL	$\$\left(N r_{1}: K r_{1}\right.$	$\$)$

2.62 Manifest

An joentifier mas be associated with a constant bs the declaretion

$$
\text { MANIFEST \$(Name = constant-expression } \$ \text {) }
$$

An jomitifjer cieclares bs a manifest declaration mas only be used in contexts where a constant would be allowable. It mas not, for instance, affear on the left hard side of an assisnment. Like slobal declarations, manifest declarations mas be combined.

MANIFEST	\＄	$N \mathrm{~N}=$ N゙1
MANIFEST	\＄	N2＝122
MANIFEST	\＄${ }^{\text {c }}$	$N r_{1}=$ K゙r

2.63 Static

A variable mas be declared and siven ari initial value bu the Declaration

STATIC $\$($ Name $=$ constant－exfression $\$$ ）

The variable that is declared is staticy that is it has a cell Eermarientls allocated to it throushout the execution of the frosram（even when control is riot dyriamically within the scofe of the declaration）．Like slobal declarationsg static declarations mas be combiried．
is equivalent to

STATIC	\＄	$N 1=$ ド 1
STATIC	\＄	N2＝ド2
TATI	\＄	$\mathrm{Nr}_{1}=$ ド ${ }_{\text {r }}$

2.64 numamic

The declaration
LET NJ，N2，．．．．Nn＝E1y E2．．．．En
creates dsmamic cells and associates with them the jderitifiers $N 1, N 2, \ldots, N M_{1}$ These cells are iriitialized to
 cells is released when the block in which the declaration appears is left．
2.65 Vector

The Jeclaration

> LET N = VEC ド
where k is a constant expressiong creates a duriamic vector by reservins $k+1$ cells of contisuous storase in the stack， Flus one cell which is associated with the identifier N． Fremution of the declaration causes the value of N to become the adoress of the $k+1$ cells．The storase allocated j． released when the block is left．

2.66 Fumetion and routine

The declaration

$$
\text { LET } N\left(F_{1} 1, F 2, \ldots, F m\right)=E
$$

declares a function named N with m Farameters. The Farentheses are required even if $m=0$. A farameter name has the same suntax as an identifier, and its scofe is the expression E. A routine declaration is similar to a function declaration except that its bods is a command.

LET N(F1, F2, F'm) EE C
If either declaration is within the scofe of a slobal feclaration for N, then the slobal cell will be iritialized to the entry adoress of the function (or routine) before execution of the prosram. Thus the function mas be accessed from antwhere. Otherwise, a static cell is created, is assocjated with the jodentifier N, and is initialized to the entry address.

The function or routine js jnvoked by the call
EO(E1, E2, Em)
where expression EO evaluates to the entrs adoress. In Farticulary withim the scofe of the identifier N, the function or routine mas be invoked by the call

N(E1, E2, Emi
provided the value of N has not been chansed durins the execution of the erosram.

Each value fassed as afarameter is cofied into a newly crested cell which is then associated with the correspondins Farameter name. The cells are consecutive in store and so the arsument list behaves like an initialised duriamic vector, The sface allocated for the arsument list is released when evaluetion of the cell is complete. Notice that arsuments are alwass fassed by value; the value passed, however, mas be an address.

A function call is a call in the context of an expression. If a furiction is bejris called, the result is the value of E . A routine call is a call in the context of a command and mas be used to call ejther a function or a routine. A routine call has no resulty jf called as an expressiong the result is uridefinied.

No dunamic (or vector or formal) variable that is declared outsibe the furiction mas be referred to from within E.

2.67 L. 2 be 1

A label mas be declared by

Neme:

A label declaration mas frecede aris command or label declarationg but may rot frecede aris other form of declaration Exactly as in the case of a furiction or routine a label declaration creates a static cell if it is not within the scofe of a slobal declaration of the same identifier. The locel or slobal cell is initialised before execution with the adoress of the foint in the frosram lahelled, so that the command

GOTO Name

has the expected effect.
The scofe of a label deferios on its context. It is the smallest of the followins resions of frosram:
(1) the commario sequerice of the smallest textually enclosins block.
(2) the bods of the smallest textally enclosims VAl. OF exfression or routirie,
(3) the bods of the smellest enclosins foF command.

Lahels mas he assismed to variables and fassed as Ferameters, It is, in semeralg not useful for them to be declared alohalg but thes can be assisned to slobal variables.

Usins a GOTO command to tramsfer to a label which is outsjoe the ourrent furiction or routirie will froduce uridefiried (chaotic) results. Such tramsfers can oriss be performed usjris the librery furictions LEVEL arid LONGJUMF which are Described in section 2.82
2.63 Simulareous declaration

Ars gecleration of the form

LET ...
mas he followed bs ore or more declarations of the form
ANII ...
where aris coristruct which mas follow LET mas follow ANI, As far as scofe is concerrien, such a collection of declarations is treated like a sirisle geclaretior. This makes it Fossjole, for examele, for two routiries to know each other without recourse to the slobel vector.

It is possible to include a file in the source text of a Frosram usins a GET directive of the form:

GET "strins"
Ori the Novag text of the GET directive is reflaced bs the text of the file whose filename is "strins" (note that the filename extension *BC: is forcedg reserdless of ary sfecifieg), A GET directive should afeear on a line bs itself.
2.72 Comments anc spaces

The character fair // introduces a comment, All characters from (and including) // uf to but mot includins the character 'rewlire' will be jsriored bs the comfiler. The character Fair /* introduces a comment which is terminated bs the fair米/ This form of comment mas extend over several lines.

Elamk limes are also igrored.
SFace and tab cheracters mas be inserted freels exceft inside a basic sumbol, but seace or tab characters are reauired to sefarate jonentifiers or system words from adioirims j. $\operatorname{dentifiers~or~ssstem~words.~}$
2.73 Optional ssmbols ョni sunonums

The reserved words In and THEN are syrionsms ini BCFL Most. implementations of ECFL also allow other surionsms arid a list of the sumorisms for the Nove imflementetion can be fouma in Afreridi\%A.

In orger to make ECFL Frosrams easier to read and to writes the compiler allows the suritax rules to be relaxed iri certain cases, The word mo (or THEN) mes be omitted whemever it is immedistels followed bs the kesword of a commarid (e.s. FESUl.TIS), Aris semicolon occurims as the last symbol of $\%$ line mas be omitted. As an examble, the followiris two Frosrams are equivalemt:

IF $A=0$ no goto x;
$A:=A \cdots 1 \%$

IF $A=0$ GOTO X
$\mathrm{A}:=\mathrm{A}-\cdots 1$

2. 74 SECTTON and NEEMS directives

SECTION and NEELS directives can only occur at the vere start of the ECFL frosrem before ans commaridsg definitionsy or GET directives). Each directive must be followed bs a striris containins a moかule riame (e.s, an external symbol in loaner terms) Aris rumber of these directives can affear at the besirimins.

SECTION "riame" defiries a module riame to be associated with the entrs roint of the current sesment of code. SECTION directives are only meaninsful at the start of a sesment of code intended for inclusion in a librars.

NEEIS "rame" sfecifies a module that is used by the current sesmerit of code and that this module should be loaded from any library scanmed unless the riame has already been defined (in another section of code).

2. 8 The rurntime dibrary

This section summerjzes a mumber of the jibrary functions and routines available on the Nova imflementation of BCFL. The routimes decribed here are consioered stariard in that thes wi.l. 1 sual.s be foung on aris implementation A rimmer of additional routinesg as well as more comflete descriftions of these routines, are foumo in section 7.

2.81 Besic Irifut Outfut routiries

The imFut/output facilities of ECFL are auite primjtive ang simpleg arid ere alwess irivoled bs meens of furiction or routine call.s.

FINTINFUT(filename) is a function takjns a filename strins as arsument and returnins a file bescriftor to be used bu the infut routines. The file is ofened for ${ }^{\text {fasta }}$ readirs. If the file does rot exist, the result is a riesative error rumber.

SELECTJNFUT(filewgescriftor) is a routine which selects the seecified infut file for future reariris.

Firnch() is a furiction whose result is the riext character from the ourrently selected irwut file, If the file is exhansted, it sjelds ENISTFEAMCH $=-1$) . The variable CH contajis this cheracter when the routine exits. See section 7.46 for a comment resardins comfetibility with other imflementations.

UNFHCH() js a routime that will canse the next call of Finch to sield the same character that it retarned on its lest call for the curreritls selected irfeut file.

FEWINL() refositions the currentlu selected irmut file to Foint to the first record.

ENLFEAL() closes the currentls selected irifut file.
FINMOUTFUT(filename) is a function takins a filename strins as arsument and returnins a file descriftor to be used bs the outfut routires. The file is ofered for "fast" writirs. If the file alreads exists, the subseruent outfut is afferded to itg otherwise a file of the sfecified riame is created.

SELECTOUTFUT(file-deseriftor) is a routine which selects the sfecified outfut file for future writims.

WFCH(C) will write the character C to the correntls selected outent file.

ENIWFITE() closes the currerits Eelected outfut file.
ENITOINFUT () closes the currently selected outfut file ario reofens it for readiris.

INFUT () is e furiction thet will return with the curreritly selected irfut file descriftor.

OUTFUT() is a furiction that will return with the eurreritls selected outfut file descriftor.
2.82 Other useful subroutiries

FACNSTFING(V,S) is a furiction which Fecks the characters U!1 to V!N into S, where $N=V!0$ \& $N=$ The result is the subscrift of the hishest element of 5 used (j. e. N/2 on the Nove).

UNFACKSTFING (SgV) is a routirie to unfack characters from the strims S jrito U!l to V!N when iv is the lensth of the strinsg arid set V!O = N.

GETBYTE (S,I) is a furiction whose result is the lth character of the strins S. Bs convention the zeroth character of a striris is its lersth.

FUTEYTE(S,I,C) is a routire which will ufdate the Ith character of the strins S with C.

WFITES(S) writes the strins S to the current outfut stream.
NEWLINE() writes a rewline to the current outfut stream +
WFITEIU(NgI) writes the inteser N to the current outfut stream risht justifjed in a fieln of wioth il flaces. If II is too small the rumber is writteri correctls usiris es meris cherseters as recessars.

WFITEN(N) ig Equivalerit to WFITEM(N,O).
REALN() is a function that reads a decimal mumber from the curremt irifut stream leavins the terminatins character in CH

WFITEOCT(N,I) writes the In least sisnificarit octal disits of N to the current outfut stream.

WFITEHEX(N,I) writes the II least sisnificant hexadecimal disits of N to the current outfut stream.

WFITEF (FORMAT,A,E, * *) is a routime to outrut A,E, ... to the current outwut stream accordins to FOFMAT. The FOFMAT strins is cofied to the stream until the end is reached or the warrijis cheracter $\%$ is ericouritered. The character followins the $\%$ defines the format of the riext value to be Frimted as follows:

In the last three cases the width in is refresented bs a sinsle hexadecimal disit. The routime takes the format amo a maximum of 11 adoitional. arsuments.

MAFSTOFE() Frimts a maf of the frosram aree inclugims furiction arid routime names, arod the values of all slobal varjables used.

EACKTKACE () Frints a summary of the dumamic stack sivins the rames of all functions ano routines currently active and the values of the first few local variables of each.

ABOFT (COLE) is called automatically by the sustem after most faults. It cen Call EACKTFACE and MAFGTOFE in order to Frovire the user with some fostmortem iriformation.

STOF (N) will termimate the job stefg returnims a completion code N

LEVEL () is a furiction whose result is the currerit value of the ruriotime stack Fointer for use with LONGJUMF . The stack. Fointer oherises onls when a furiction or routine is entered or J.eft.

LONGJUMF(F, L. will canse a norimlocal wimf to the label Let the sctivetion level siven bu the stack fointer F.

AFTOVEC(FgN) $j=a$ function which will aFFls F to two arsumerits U ario N where U is avector of size N AFTOUEC

```
oould (illesellu) be refirued in ECFL Es follows:
    LET AF'TOUEC(FgN) = VALOF $(
            LET V = UEC N
            FESULTIS F(U,N)
    $)
```

3 ECFL on the Nove …… Ari Qverview

The files relatims to the system are listed below. Users cari link to the files in the rormal was or use the Cli commarids int LINKECFI. MC which can be executed by tupins:

Gaster-wirectors\%:LINKECFL.

The relevarit files are:

1.INKECFL. MC	-	CLI macro for limkins
ECFFL. ${ }^{\text {SU }}$	--	the command frosram
BCOMF. SU(, OL)	\cdots	the compiler
EXFEF.SU	--	the cross-reference frosram
BCGN2.5U	--	the code serierator
ECIIEA, FiE	\cdots	the debussiris fackase
ECFLIEAEE	--	the ECFL librars
(X)LIEHIFF E EC	\cdots	the stariard librars heade

Further details are siven in section 4.1 .

3.1 Comeilation

The ECFL comfiler is usually invoked by use of the commemd Erosram ECFL.SU This Frosram calls the comfiler f code semerator + assembler to comfile a BCFL source wrosram into a relocatable bimars file. A tufical commarid misnt be

ECFL/S FFROG कLFT/L
Further details are siven in section $4+\mathrm{J}$.
3. 11 Library declarations

The directive
GET "LTEHLKF"
will irsert the stariard librers declarations from the file whose filename is LIEHLFi.BC. A listins of the stariard librers header can be fourid in Afferidix C. Note also that maris of the standard suffort routimes reauire the fresence of a NEELIS" directive in order to loed them from the librars. The wse of XLIEHMF is discussed in section 9.5.
3.12 Iniasmostics

The ECFL comfiler has three Fasses: parse, transjate and code-senerate. There are corresforidinsly three kinds of error diasmostic.

A \quad arse diesmostic ocours wher a relativelu simble suntactic error is detected burins the first fass of comfilation The messase includes a fortion of the source frosram to sive the context and a brief descriftion of the probable error. The comfiler ustalls skifs to the end of the line before continuins the farse Later error messases should be viewed with suspicion since the automatic recovers is ofter rot vers successful.

Tramslation Fhase diasmostics ocour iri the second fass of comfilation arid refort errors such as the use of an urueclared identifier. Each error is hriefly described ard a representetion of the relevant fortion of the farse tree is Frinted.

Codewsemeration diasmostics are rare arid usually result from table overflows or comfiler errors.

3.13 Compilation oftions

The comfilation of a frosram can be controlled bs various comfilation oftions fassed to the comfiler by the Cli frosram (in COM+CM). The oftions for the code-senerator are senerally different from those of the comfilerg and riot all of the oftjons cen be sfecified to BCFL. SU, Some users mas therefore reed to run the comfiler (ECOMF, SU) or the code semerator (ECGN2. SU) sefaratels in some circumstances. All oftions are sfecified bu sinsle letters arod some are Frimerjls debussins aids for comfiler mainterance. Further detajls are siveri in sections 4.1 -.. 4.4.

3.2 Execution

Wher the frosram has been compiled and subseruently loaded into a save file it can be executed directls. When ruminis urider the CLI i.t can be ruri like aris other save file This section describes losdins amd rummins a frosram.
3.21 Losdims
L..oedirs is achieved by use of the stambard relocatable loaner FLIFF, The librery ECFLJE,LE should be scemmed last to load modules thet define outstendins extermal riames. Further details are siver in sections 4.6 and 4.7. Note thet a mirimum of two tasks ("2/K゙") mast be sfecified to FluFg evert j.f the Frosrem is riot a multi-taskins one.

3. 22 Frecutjon feulta

In the event of an exemution fault such ss division bu zero or steck overflow the routine ABOFT is celled. This will

Frinit the fasit muber and derendins on bits set in Frimet, mas be followed by a summary of the ruri-t.me stack (ririnted out bs EACKTFACE and a maf of the frosram store and siobals (Frinted out Ds MAFSTOFE). This output is alwass sent to the file "कLFT". BCFL rurntime error messases are jisted in Afrendis II.

3.23 A demonstration frosram

Consider the followins frosram held in the file TESTFFOG.EC:
// THIS IS A LEMONSTFATION BCFL FFKOGFAM
NEELS "BCFLC"
GET "LIBHILR"
// THIS INSERTS THE STANDAFII GLOBAL DECLAFATION
GLOEAL $4($ TFEE:100; TFEEF:101 \$)
STATIC $\$($ COUNT $=0 ;$ MIN $=0 ;$ MAX $=0$ ()
MANIFEST $\$(/ /$ THE FOLLOWING NAMES WILL
// BE USEII AS SELECTOFS
UAL $=0$; $1 \mathrm{EFFT}=1$; $\mathrm{FIGHT}=2$
\$)
// THE FUNCTIONS FUT, LIST ANI SUM(DEFINEI BELOW)
// OFERATE ON A TREE STFUCTURE WHOSE FOOT IS HELI
// IN TFEE, IF T IS A BFANCH IN THIS TFEE THEN
// EITHEF T=0
// OR T FOINTS TO A TREE NOLE ANI VAL!T IS AN
// INTEGEF(K SAY), LEFT!T IS A BFANCH CONTAINING // NUMBEFS \& ANI FIGHT!T IS A BFANCH CONTAINING
// NUMEERS $\begin{aligned} & \text { N. }\end{aligned}$

LET FUT(K, F) BE // THE FOUTINE FUT WILL AMI A NOHE TO THE // TFEE WHOSE FOOT IS FOINTEI TO BY F.

* (F UNTIL ! $F=0$ NO

क (LET T = ! F
$\mathrm{F}:=$ ǨUAL!T \rightarrow QLEFT!T, eRIGHT!T \$)
VAL!TFEEF, LEET!TFEEFF, FIGHT!TFEEF: = ド, O, 0
! F: = TFEEFF
TFEEF: = TFEEF + 3 क)F'
ANI LIST(T) BE // LIST THE NUMEEFS HELII IN THE TREE T UNLEES T=O TO \& (LIST(LEFFT! $)$

IF COUNT FEEM $10=0$ NO NEWLINE()
COUNT : $=$ COUNT +1
WFIITEF (${ }^{\circ} \%$ I' $^{\text {" }}$, VAL! $!$)
LIST(FIGHT! T) *)

```
ANII SUM(T) =T=0 - - 0,
    UAL!TMMN SOM(RIGHT!T),
    VAL!T\MAX ...> SUM(LEFT!T),
    UAL!T+SUM(LEFT!T)+SUM(FIGGHT!T)
ANII START() BE &(1.
LET V = VEC 600
TFEEE, TFEEEF:=0, U
FMCH() // THIS IS A CONUENIENT WAY
                    // TO OFGANTSE A TEST FFIOGFAM
$( SWITCHON CH INTO $(S
    CASE 'Q': CASE ENISTFEAMCH:
    WFITES("*NENI OF TEST摂")
    FINISH
    CASE 'F'; FUUT(FEALIN(), QTFEE) // FUT A NUMEEF:
        LOOF:
    CASE 'L': NEWLTNE() // LIST THE NUMEEFSS IN THE TFEEE
        COUNT := 0
        L..TST(TFEEE)
        NEWLINE()
    CASE 'S': MIN:= FEALIN()
        MAX := FEALIN()
        WFITEF("*NSUM OF NUMEEFES FFFOM %N TO %N IS %N*N",
                            MIN, MAX, SUM(TFEEE))
        LOOF:
    CASE 'M': MAF'STOFE() E ENICASE // FFINT A STOFE MAF
    CASE 'Z': TFEE {= O; WFITES("*NTFEE CLEAFEIWN"); ENICASE
    CASE **S'* CASE '*N' ENIICASE // JGNOFE SFACE ANI NEWLTNE
    IEFFAULT: WFITEF("*NEAI CH '%C'*N*, CH)\hat{y ENIICASE}
    $)5
    FICH()
4) FEFEAT
$)| // ENIM OF FFOGFAM
A turicel console dielosue to comfjleg loadg arid rum the
Bhove frosram storeg j.n the file TESTFFOG+EC is refroduceg
below.
    ECFL TESTFFOG
* * * ECFL FILE 'TESTFFOG.BC' COMFJLEI AT &time/dates
FTNNTNG ECFL COMFILEFE FEEUTSION 17.7.77
TFEE SIZE =: 2713
```

```
NOUA 2 COLE GENEFATOF, FEUTSION 7. %.77
FROGFAM SIZE IS 348 WOFIS.
                                    -TITLE TESTFFOG& MAIN FFOGFAM (NO OUEFLAYS)
[.COMFILATION COMFLETEI]
O RLLLF/F TESTFROG ECFLIE.LE 2/K
TEGTFFOG.SU LOALEM BY FLLIFIFEU OS.00 AT Gtime/Dates
    TESTF 000445
    NOLEE 001624
    BCFILC OO1624
    BCFILI 003146
    BCFLXX 004337
    MULT 005254
    IIURE OO5273
    FSHTF 005334
    MFSCH 005370
    TFSCH 005370
    KILI. 005400
    ATCEM 005400
    NSAC3 006025
    IUMMY 006025
\begin{tabular}{rr} 
NMAX & 006034 \\
ZMAX & 000336 \\
CSZE & 000000 \\
\(E S T\) & 000000 \\
\(S S T\) & 000000
\end{tabular}
Y TESTFFOG
```



```
L..
```


4 How to mse BCFL or the Nove

4+1. Simele use
The "frorit-enio" Frosram ECFL. SU js rormally used to comisile ECFL SOurce frosrams on the Nova. This frosramin turn calls the comfilerg code semeratorg arid mecro assembler to froduce morresfondins relocatable binary files which mas then be loaded bs the standerd system loader (FLIFi.SU). In the simplest cesey

BCFL FFOG
would be sufficient to compile the source prosram FFOG. BC (rote thet the "EC" extension js alwass required) into the relocatable nimers file FFOG.FE, Jritermediate fiJes FFOG。OC and FFOG. SF are ereated arid subsequentls deleted (uriless slobsl. oftion \quad / I^{\prime} js sfecified) wheri no lonser required. BCFL s SU refererices the files BCOMF.SU, ECOMF。OL, EXFEF. SU, BCGN2.SU; MAC.SU, MACXFi.SU, amb MAC,FS. Entries for these files must therefore exist jn the current directorsy a situstion which is most easils achieved bs use of the commamo

4.11 G1obal oftions

8	hrief listirs onls (do mot list ECFL Eource)
C	jrisert coll countiris (imFlies "/Na)
F	semerete fest code (default $=$ comract code)
I	retain intermediate files (- . OC', \cdots.. SF)
L*	Semerste literal OCOME
M	MAFSTOFE after comejletion
N	jrisert routirie riames
0	compjle 3 ¢ overlas (if "/S') or to use overlass
F	
F	Froduce cross-refererice list on lisstiris file
9	commile as section (i, e.g rot as main frosrem)
v	serierate steck overflow test corie
X	seritas check orily (rio ocome produced)

UFtions marked with "* are wrimarils of use for comfiler majritemarice.
4.J2 Local oftions
G set meximum slobal mumber to sFecified value (Gefeult = 255)
l. Jistirs file (default = CONGOLE with "/E" assumed)
g set jrijtiel steck size to sfecified rumber of words (oefenlt = ell of memors except for 1024 words of free vector sface) "O/S" specifies 2048
words of steck sface
u use sfecified (sinsle) letter to serierete urijque section lahels (default ="A")
z set maximum pase zero slobal rumber to sfecified value (default $=155$)

An arsument without a local option switch is assumed to be the ECFL source filemame. The exterision *BC" is used resaroless of any extension sfecjfied.

4. 13 LINKBCFL

The file LINKECFL +MC contains a sequence of CLI commarids to link all the files riecessars for a BCFL comfilation into the current directors. Assumins that the master directors contains the necessars entries, execution of the followins commarid:

Gester-directorys:LINKECFL.
will leave the ourrent directors with sufficient facilities to use all of the ECFL sustem.
4.2 Stases of compilation

There are five distirict pheses jri a ECFL compilation These ereg jri order*
a) EomFjletion BCFL source to OCOME
b) crosswreference (oftional) listins of meme references
c) code seneration oCOLE to assembler source
®) a) $\mathrm{ambl}=$ sesembler source to relocatable birers
e) loedirserelocatable biriars to save" file

Fach whase mes De werformed sefarately as described iri the remeirims fortioms of section 4.

A traricel segmence of commends to combile a frosram held in the file Foo. EC misht be:

```
ECOMFFFOO NLFFT/L
EXFEF FOO
BCGN2/F/F/U FOO $LFTTL
MAC FOO
ELIF/FFOO BCHEE ECFLTE.LE 2/K゙
```

This would result iri F00. Sv ("seve" file formet). Note that the first four liries of this sequerice (i, e. g everethins excert the load commamd) would normally be reflaced be a sinsle simFle commang to ECFL.SU.

4.3 Gomwilstion

The ECFIL comfiler is held in the file ECOMF。su, with overlass in the file ECOMF ol (this mame mas mot be chansed) * The comfjler overlass itself in two jntermal fhases: the first reads the source text into memory and builds a sumtax tree containins a descriftion of the frosram with a set of accombansins defiritionst the second translates thjs tree into the machine-iridemembert jritermediate code oCOLE. The same commiler cari be used to froduce ocoliz for other comfuters if thejr code semerators are available. The compiler reads ECFL source from the file asources BC arod writes oCOME to the file Gsourcea, OC. Error messases ario informative comments are sent to the listins file (see local oftion "L').
4.31 610bel oetions

A* list AE tree
B brief listins onls (do not list ECFL.. source)
[* E Eet FFrEEUG
E inhinjt wase eject at start of listjris
G ro GET directives are obesed

1. * छerierete literal OCOLE

M* MAFSTOFE after compilation
T* set FFTFACE

Oftions marted with *" are wrimerily of mse for comfiler mainterienice.
4. 32 Local oftions

A arferid outwut to specified file
L listirsfile (default = CONSOLE with \quad /E' assumed)
0 write OCOME outwut to specified file
An ersmment wjehout a locel oftion switch is assumed to be the ECFL. source filememe. The extemsjoms n EC" for irmput ano ". OC" for outfut are used reserdless of ans exterisions smecified.
4.4 Crosswreferemce ljstins serieretjon

Ari ortional stef in erosram froduction js the seneration of $\%$ crosewreference listing of the source frosram. This js Ferformed be e utilits frosrem held in the file EXFEF, SU, which Froduces ari almabeticel Jistins of all mames msed and the lime mumber of esch occurremce Note that no distinction j. mabe betweer occurrerices of the seme rieme affearins in different scopes.
4.41 loocel oftjors

C restrict outfut line lensth to sfecified riumber of cheracters (default =120)
L. listirasile (default = "\&LFT")

4.5 Code serieration

The standard (NOUA 2) code serierator for the Nova family of computers is held in the file ECGN2.SU. This mame mas be chansed if desired, exceft for use with ECFL. s. SU. The code generator reeds oCOME from the file sources, OC end froduces an assembls lansusse source file in ssources. SFi as outwut. This file js comelete in all resfects and mas be edited bs the user if desired. Error messeses arid informetive comments Bre serit to the listins file (see local oftion "L").
4.51. Global oftions

4. 52 Locel owtioms

A afwemg outwut to swecified file
G Set meximum sobol number to sfecifiea value (nefeult = 255)
l.. Jistiris file (default = COMSOLE)
M write mecro essembler source to sfecified file
$\square \quad$ use specified reme as overlas file title (" 0 " axtersion foreedt default = same mame as es.embler 末ource)
$5 \quad s e t$ injuiel stack size to EFecjfieg mumber of worgs (defeult = all of memory excert for 1024 woros
of free vector sFace) "0/S" Epecifies 20A8
worde of stack seace
T MEE \quad Fecified meme as erosremtitle (oTTTL)
(oefoult = same rame as aseembler source)
U use seecifieg (sirsle) letter to sererete urioue

Section lobels (defant =" "A")
$Z \quad$ Eet maximum Fese zero slobel mumber to Efecifjed value (Default $=155$)

An arsument without a locel oftion switch is assumed to be the OCOHE filename. The exterisjoms "OC" for infut and "SF" for outeut are used resaroless of ans extensions sfecified.
4. 33 Code semeretion error messeses

Apart from errors detected while decodims the command limeg code semerator error messases are relativels rare fossible user errors include:
a) code seneratins a file that does not contain ocone
b) Frosram too larse or too comelex (j, ey tables full)

Other than in these circumstances meseases usuallus indicate malformed OCODE (Fossibls due to en error int the comfiler) or a bus in the code serierator itself. Full detailsg includins listiriss of sourceg OCOLE, aris code froduced should be reforted.
4.6 Assembly

Assemily is mormells ferformed bs the stenderd Nova-famjly mecro assembler (MAC, SU)。 As suchy all the 山sual oftions are aveilahle $3=$ described for this frosram. A tspical commaria, thorefore, misht be:

MAC FOO WLFT/L
As the file FOO. SR will rormslly contain a END directiven user-wroduced zssemble code modules cerimot be inserted followiris the prosrem uriless code serierator locel oftion E is usen -
4.61 Assembly error messases

AFart fromerrors detected while decodins the commarid lireg assembly error messases are rare. An excertion is messase jndicetirs that the تsmbol "GNGmmbers" was rot defired. This winl ocour if the values specjfied bs code sermerator locel oetioms G and Z were rot sufficientlu larseg and the code seneration should De refeated with increased values. Errors cen 3150 result from misuse of code serierator slobel. oftions II and E Other errors usualls indicate cone senerator hussy which should be reforted with full evidence.

A.7 Losdiris to e sove file

Felocateble binars modules produced bs the assembly fhase can be loaded into executable save files by the standard relocatable lozder FLDF, The rurntime sustem is linked in at this time, and some care is mecessary to ensure that modules are loaded in the correct order. In seneral, the load command line format will be as follows:

FLLIR n/K <all ECFL modules ECFLJE,LE sall non- BCFL modules.
All ECFL modules (includins ans assembly lansuase routines written to the specifications of section 6.6) must be sroufed tosethery end must frecede the reference to the standard ECFL librars (ECFLIE,LE) in order to proferly initialize slobals. The first module in this sroup must be the main prosram (i.e., comiled without the slobal 5 switch) to provide a stertirs abdress for the seve file.

The rumber of tasks specified in the load command (\quad i/k) defends on user requirements, but must be at least two or sreater. The followins load line:

FLDR/F 2/K FOO SEC1 SEC2 BCFLIE.LB \&LFT/L
wild ereate a save file $\mathrm{FOO} . \mathrm{SU}$ consistins of the three ECFL modules FOO.FE, SEC1.FE, end SEC2.FBy Flus all reauired components of the runtime librery.

In seneral. losdins and linkins is soverned by the decleration (NEEDS) and sumpls (SECTION) of external symbols. Ar, adoitional techriatue is eveilableg howeverg to force loadins of the debussins procedure module ("ECFLI"). This mas be brousht in bs includins the name "ECDEE" amons the srour of BCFL modules, which mes occasionells be more desiresble then the usual method of comfilins a NEELS "ECFLI" directive.

4.71 Load error messases

Most errors are the result of undefined external. names. "If these are sustem names it imelies thet the librars was not proferls scenned (i,e., BCFLIE, LE wes omitted from or jmproperly fleced in the FLLFi commend. Alternativels, this can be caused bs the failure of the user to provide matchins gECTION directives for all NEEDS directives. Firally, if the errors concern slobel ssmbols (i.e.g GNrmin), then either two or mare (or zero!) of the specified modules have been compiled es main frosrems, or the velue specified by the code senerator local oftion G was mot sufficiently lerse.
4.72 Loadins with overlass

Overlaus are loaded in the normel fashion usins kLnFi, with

```
the followims =Fecial comsideratioms;
    1) the overlass must affear in the commama line
        immediately followiris the library (ECFLIE.LE)
        sFecificatior!.
    2) the librars must be sfecified a secorid time
        immedjately followins the overlas list.
E.\Xi&%
    FLIFF 2/K゙ FFOG ECFLJE.LE [OUO,OU1A OUJB,OU2] ECFLIE.LE
For more information concermins the use of overlasse see
section %.1.
```

5 Coge Gemeration

w. 1 Tywes of code serierstor

The description below refers to the starigarg (NOUA 2) cone sererator BCGN2. SU. This $i=3$ sequemtial coge semerator wrobucins editable assembly code as outwut which mas be assembled with the stamiard Nova assemblers.
5.2 Code for oferetors

This section details the code that the code semerator wrobuces for various oferations. This is onls intended as a suide arid the core rroduced for some oferations will minombtedly charse between different versions of the code semerator Not all oferations are dealt witho onls those of Farticular interest are discusseg.

5.21 Flus arig mirus

Ftus (t) and minus (…) simply involves loadins the two values into resjsters ario then adoins or subtrectins the yalues
 sereretes the code:

亏Eves betwen one and two irstructions and js worthwinje as
 oferetion je used when ti je rewoed ara the velue is in a resjeter.

5.22 Multjolicetion

 TEsisters ACO \#na AClg resister ACB js then clesrea ana a "JSK e" irstruction comFileg theresult jereturmeg in ACJ. The ectusl rature of the subroutime aefemas on the
 Bvoja chensins the oode semerabor to teke acoomt of differemt hernwere

Note that whorotirne wells to this routime ard to those

 womvertion for fumedomproutime celle.

Mivision（／）amb remaimor（REM or \％）are semeratea in tine same wes as multifly bbove．The aivigena is lobreg imbo ACl amo the divisor into ACO今 resister ACZ js cleareg ang e＂JSF e＂instruction sererated vie a locetion on rase o．The same routine is used for divide or remajnder and the two results are returried in resisters ACO（the remainder）amd ACl（the Quotient）．The division js a sismed FOFTRAN tsfe divisiong i．es．the remainder arm the atotient alwass have the same sisn and divisjon is bstrumetion towerds zero Howevery users who require machine inderenderice should avoju assumbtions of this mature as this js not defined in the lansuase，Nevertheless，for this imwlementation the equation

$$
A F E M E+E(A / B)=A
$$

nolas for all values of A ano A ＋
$5+24$ Shifts

The losical left and risht shifts in BCFL are sererated in a similar fashion to the multislication abover The pattern to be shifted is loaded irnto resister ACO arig the amombt of the
 instruction senerated to one of two monresses on pase 0 （demendins on the birection of the shift）．The exect definition of the oferation in terms of the amourit of the shift is：

$$
\begin{aligned}
& \text { 玉monit }=0 \quad-\quad \text { no effect } \\
& 1 \because=\text { amount }=15 \quad \% \quad \text { as exfected } \\
& 16 \text { - emourit result is } 0
\end{aligned}
$$

 sermeration of ome or two innlime instructions which are more efficient than the semeraliaeg subroutime cell．
5.26 L．．．sicel owerations

BCFL Froviges four aiadje losjeal oferations：\＆（LOGAND）， （LOGOF：y NEQU，arn EQU．These all involve loagins ans two resisters with the yelnes irvolven arn then serieretins a corie seruerace irvolvirs these two resisters．The cone for the $\&$ oferation js trivialg for the other oferations the aode is as follows（essumins the velues are in resisters a arac B）：
，（bogors）

COM	A：
Adin	，
Art	

$\hat{y} A:=-\mathrm{A}$

relsjns on tine equetion A B＝：Aq＂B＋B

The code for EQU and NEQU imvolves three resisters and the third resister must be eleered. If this resister is genoted bs J. ther:

NEQU

relsing on the equation A NEQU $E=A+E-2 *(A \& E)$
EOV is the same seauence followed bs a Com A, A instruction.

5.3 Characters and strinss

The character code for the ECFL implementation on the Nova is 7 bit ASCII (American Standard Code for Iriformation Interchanse). A complete listins of relevant codes and associated sraphics is siven in affendix B .

This section describes the rearesentation of characters and strinss.
5.31 Characters and escapes

The refresentation of cheracters is as in standard BCFL and the value of a cheracter genotetion is as siven in afrenoix E (i.e.g ' A ' $=65=$ \#101). However, some cheracters carmot be directly refresented in BCFL and these can be escaped into character denotations and strinss. The standard escare character is which jrn ECFL is remresented as '**'for a sinsle * character.

Other denotations that can be refresented in escapes are:

*0 ${ }^{\circ}$	null (zero)	0
* ${ }^{\text {c }}$	bell.	7
* E	becksface	e(\#10)
* ${ }^{\text {P }}$	tab	9(韭11)
* ${ }^{\text {L... }}$ '	1. ine feed	10(\#12)
* ${ }^{\text {d }}$	verticel teb	11(\#13)
'*F'	form feed	12(\#14)
'*F'	form feed	12(\#14)
' w^{\prime} '	corriase return	13(\#15)
* *9'	FFace	32(\#40)
'*"	sirimle	34(\#42)
'*"	sinsle	39(\#47)
' ** $^{\prime}$	sirisle *	42(\#52)

The Jenotation 'sN' is the standarg motation for newlime in this imelementetion, Currentls this is identicel to '*L' but wrosrems shouja not assume ansthins about the value of 'कN'
as this mes whanse in future imblememtetjoris.
Note that * followed bs aris other cheracter (inclugjrs lower cese letters je trested as thet character itself lf a जtrjns is too lons tofit on ore lime of text jt can be selit. textualls by insertins the seauernce "*ucariase cortrolvetabs or sfaces.*" ariswhere in the strins this js combletels ismored (tabs or sfaces are oftional). Otherwise carriase control characters in a strins wroduce a fault.

5.32 strins refresentation

The stariorg BCFL $s t r i n s$ refresentation is used (see section 2.2). Cheracters are Facked two to a word with the most sjanificamt character of ars fair in the leftmost bste The first bute of ars strins contains the count of the momber of
 of 3 strins js 255 characters. EmFt: \because trinss (lemsth o) are al.owed. The hste iridecstarts from 0 (ss do vector irnices) so that the courit js held in bste og the first character j.s in bste $1 . g$ the secomi charecter in bste $2, ~ a n d ~ s o ~ o n . ~$

The omls defarture from atamaarg ECFL is the abijtionel feeture that strimss are macked with at jeast one zero bste at the erid This bste js not jricluded in the comit ano for al. Starierd BCFl. whrmoses is completels ismored. Its wurose js to ellow for the manjwuletion of text elements thet are gelimjted bs a mul bste (such as oferetims ssstem fidermmes).

The strins "IATEG will therefore me rewresented be a mojnter to e storese vector weckeg es follows:

where the $7 t h$ bste $j s$ set to zero (rull) bs gefallt Note thet user routimes which areate or cofs strinss shoula Freserve thja convertion if the mull termimator facilits is Gesireat

\%-A1 Truinection

The ! oferator in ECFL allows the prosramer to use e velue as an adoress (cf d in assembly code). The code ouremble senerated for this oferator js not ortimel because of some restrictions and difficulties in immementation (which, hofefulls, will be eliminated in future versions).

Thus indirection is usually achieved by indexins the value in resister AC3. This makes comparisons such as ! I=!JQuite inefficient.

5.42 Adrresses

The oferator in BCFL allows the prosramer to use the absolute address of a variable as a warameter. For slobal or static variables this adoress is a load-time constant. However, stack adoresses must be calculated at rurimime bs addins the constant to the stack fointer in AC2.

6 The Pachime Gode Jmterface

This chafter describes the standard librars routines provided with the Firnins BCFL system Mans of these routines have irdentical counterferts in most ECFL sustems (see section 2.8), bust a rumber are unique to the Finmins imflementationio

Leclarations for the standard library are normalls cortained iri the file LIEHLIF, EC (althoush this mas be charised bs the user if desired. Frosrams that wish to use this header should contain the directive

```
GET "LIEHEF:
```

at an affrofriate flace A listins of this staridard header can be foumbin Ampendix C.

The riames referenced in this chafter are the stambard ECFL furiction/routirie mames. These mas be charised bs the user if Sesired, frovided that the slobal declarations referemce the same number as the starigard memes (as shown in the LIEHDF 1istins).

In the detailed descrifetions which follow, ari $=$ sisn Frecedins a rame is indicative of a furictiong rather than a routirie.
7.1 Library liriksse

The ECFL librars js keft iri the stamorg format library file ECFLIEALE, It consjsts of a mumber of mecessars and oftional modules which are Joaded bs the FLnf oferation. The order of the moかules in the librars is sisnificantg aru users wishins to add rew modules should flace them at the besiriniris.

Loadims of the modules js dinected bs "extermel" mamesy Frobuced bs the code semerator both automaticells ano in resforise to NEEMS directives. Call-by-rame js not fossible mue to the orsanizetion of the ECFFL slobal vectorg but tine available routiries are collected irito easily sfecified ※romesy esch loeded with a sinsle NEEIS directive.

7.2 Eresic routimes

The routimes arig furictions listed ju this section are comsidered fundamentel to the BCFL rurntime envinomment, and are loaded automaticalls from the librarsy without the recessity of a NEEMS directive.

STAFT () is riot Defined bs the librars arid must be sufolied bu the user. It is (bs tradition) slobal vector entry 1 a aro this is the routine which is entered (bs a stanoria routime call) after rumotime jmitialization is comflete the slobal number of STAFit cariot be rewdefined bu the user. Fieturnins from this routime has the same effect as executiris a FINISH commarid.
7.22 STOF

STOF (COME) is a routine which rever returns. It takes a comfletion cone as its simsle arsumenti if this is aerog then the prosram termiriates riormally (if oferatiris mider fillos, a - FiTN is Ferformed). Non \quad eno completion cobes are treated as error messases (, EFTN under FIIOS), arid mas be of two types: mesative values are comflemented and fassed as oferatims system errorsit fositive values are incremented bs \#10000 and Fassed as ECFL rurimime errors (see Afferidix II). An examfle of the use of STOF in an error situation is:

IF INFILE \because THEN STOF (INFILE)

7.23 GETEYTE end FUTEYTE

=GETEYTE (VECTOFgJNLEX) js a fumction which wielos a Farticular bste withiri a vector. Its first argument is a vector or striris address its second a bste mumber for that vector or strins. The result is the (g-bit) bste sfecifiedg which will alwass be in the ranse 0-255.

Ori the Nova (zs in most BCFL implementations), bstes are rumbered from left to risht to corresforio with strims Fackiris:

If the first ersument is a ECFL strins, then GETEYTE(U,N) will sield the Nth character of same:

GETEYTE("STFING", 2)
wjul Froduce the value ' T '. Also int this gituationg $N=0$ will. wield the sjae of the strims (rumber of characters in the strims):

GETEYTE（＂STEJNG＂，O）

will Froduce the value 6 ．Note that this is also the hishest bste rumber of the strins（but not includins the＂invisjble＂ rull termimator discussed in section 5.32 ）．This sfecial case of zccessins the first bste（lensth）of a strins is more raturalls accomflished usirs the field selector LENGTH， defined in the staridard librars header．Thus，an expressjon eauivalent to the above would be

LENGTH OF ${ }^{\text {B STRING }}$

FUTEYTE（UECTOF，INIEX，EYTE）is a routine which stores a sfecified bste jnto a vector or strins．The first two arsuments are as described for GETEYTE aboveg the third sfecifies a bste value（the rishtmost 8 bits of the value are usedi．This routirie will urgete the iruicated bste to the riew value．

LET STRING＝GTFING＂
FUTEYTE（STFINGソ2， F＇＇$^{\prime}$ ）
will change the strins addressed bu STFING from＂STFING＂to ＂SFFING＂

7．24 FACK゙STFING anは UNFACドSTFING

These routines ere concerried with the coriversion of strinss betweer racked arid unfacked formats．The riormal Facked format of a ECFL strins is as defined jrisectiom $5,32$. Unfocked strimss are structured with one bste fer word As j．n the eacked formetg the first element（in this caseg the fjrst word）js used to contajn the strims lemsth（i，e． rumber of characters）．The rull bste delimiter converition je not used in the urifacked formatg so a vector of 256 locations （UEC 255）js sufficient to hold the lersest urimacked BCFL strins，In facked formet， 129 ］ocetions（VEC 12e）are mecessars for the larsest strins．
＝FACK゙STKING（UECTOF，STFING）is a furmetion which cofies a strins from one vector to anotherg comvertims from urifacked to Facked format in the frocess．Its result is the subscrift of the hishest element of the destination vector used（N／2 on the Nove，where N is the rumber of characters in the strjus）。

UNFACKSTFING（STFING，VECTOF） $5 S$ a routire which cofies a strins from one vector to amother，convertims from facked to urifacked format in the frocess．

$7+25$ L．．EVEL． LO ONGJUMF＇，arid AFTOUEC

[^0]of the rointer rether than the contents of AC2, which are offset bs 128). The value mas be used for LONGJUMF or for dehussins Furfoses such as BACK゙TFACE.

LONGJUMF (FOINTEF, ALIFESS) SFecifies a value for the stack. frame pointer (tyfically as returned by LEUEL), arid an address (tspically a label) to which control is tramsferred. The value of the frame fointer must be currentis active or the stack will be corrupted when the eritered routirie attemfts to returri. If the activation level is rot afflicable to the routirieg the results are undefinedi frosrams should rormally erisure that the value used for the frame fointer was obtairied in the same routine in which the adoress label was defined. An illustrative ewamfle:

GLOEAL $\$(L: 100$; LAEEL: 101 ()
LET STAFT () EE $\$($
L. $:=$ LEEVEL ()

LAEEL:
\$)
-
-
-
LONGJUMF' (L, LAEEL)
It js also fossible to sfecjfs a routime or furnction address as the second arsument (LONGJUMF simuates a routine call to the adoress with a stack frame sjae of zero), so the call

LONGJUMF (SYSTEM (STACK゙EASE) , STAFT)
mjsht be a useful thins to do the cellins routine must mot returim howeverg as there is no lonser aris flace for it to return to!
 stack vector whose size is seecified at rum time This is rormalls mot allowed in ECFLy as the size of ans vector :rocipied ms UEC must be known at compile time A defimition of AFTOUEC in (somewhet illesal) BCFL terms is;
1.. ET AFTOUEC(F,N) = UALOF $\$($

LET $V=V E C N \quad / /$ define EFecified vector FESULTIS F (V,N) // effly function to vector
*)
The secono arsument must be a Fosjtive inteser which is mot J.arser then the sface left on the stack (this mas be checked bs use of the $1 . . E V E L()$ and SYSTEM (STACKTOF' furictions). The oferetion js ferformed bs constructins both the requested vector end an affrofriate callims sequence for the referenced fumction (or routine) on the stack. Aris result returried bs the furiction will affear as the result of AFTOUEC Note that stack overflow is checked reserdiess of the code serierator
slobal "U" oftion.

7.26 GETVEC and FUTVEC

These routimes erovide a simple serieral-furfose memors mariasement sustem, usins a firstwfit method with bouridary tass to coalesce blocks beiris freed with other blocks alreads free. The intermal variable SLOF (which is injtialized to $3, i t s m i n i m m$ allowable value) is a rumber such that if N words are resuestedg and if the first free block of size N or sreater is no larser than N+SLOF, then the whole block will be allocated iristead of heiris sflit uf. Larser values of SLOF (which mas be set usins the SYSTEM fumction tend to reduce frasmentetion at the exferise of urused sface in the allocated blocks.
$=G E T U E C(N)$ creates a dunamic vector bs removiris $N+1$ cells of contisuous storase from the memors manasement system. The adoress of the $N+1$ cells is returned as the value of the furiction. The storase allocated is released bs FUTVECy in contrast to the VEC allocation described iri section 2.65, which is released when the execution block is left.

FUTVEC(UECTOF) is a routine which takes as its arsument a Fointer to a vector frevjously allocated by GETVECf thjs sface is made available for further allocatiori Neediess to sas, srave disorder will result if the sface assished bs GETVEC is overrum or if some raridom number is harided to FUTVEC.

7.27 SYSTEM

=SYSTEM (SFECIFIEFi, .. $)$ allows BCcess to intermal variables mairitaimed bs the BCFL rumutime ssstem. This cafabilits is tupically \quad seed to determine available sfaceg modify stamoarg Farameters (such es the SLOF value used bu GETUEC), or for some sfecial -wurfose debussins furictions. The first arsumerit specifies the oferation to be ferformed, chosen from the followirs list (the riames of which are defined int the stariard librars heaдer):

GLOEALZEASE returris the Dase adriress of the ZFEL ※lobals.
GLOEALNEASE returris the base adoress of the .NFEL凸lobals.
GLOEALEFEAK returns the break foint of the slobaj. vector (i,e, the last slobal mumer on fase zero).
GlobAL TOF returns the tof adriress of the slobel vector.
STACKEASE returns the base adoress of the ourrent task. stack.
STACKTOF returns the tof address of the ourrent task. stack.
STACK゙SFACE returris the sface (in words) remainins on
the current tesk stack.
VECTOFSFACE returre the size of the next vector jmmediatelu avajlable from oETVEC (note that this is onls sisnificarit wrior to the execution of ams FUTUEC oferations, which mas frasment the availanle sFace).
FFOGEASE returns the base adoress of the frosram. NFEL sface.
FFOGTOF returris the tof address of the frosram , NFEL sface (rot includims sface used bs stacks or the memory manasement sustem) .
ALIFESSOFGLOEAL, N returns the adriess of slobal rimmer N。
AMIFESSOF, ALIFi, AC2, AC3 returns the sdoress referenced bs a memory reference iristruction (MFI). The secorid arsument $i s$ taken as the aboress of the MFI. If this MFI uses address modes 2 or 3 it is recessars to know the velues of resisters AC2 arid ACZ when the instruction is executed. Arsuments three and four are used for these values respectively. If these values are sreater than aero thes are takeri as siverig if riesstiveg the routirie will returri -1 except that, for the contents of AC3, a search is made to see if the resjster was loared iri the Frevjous 4 instructions, in which case the loaded value is used. Not that the contents of AC2 refresent the LEUEL when the instruction was executed; this is the value that should be fassed (rot the actmal contents of ACO), as the routirie corrects for the -128 discrefarics.
GFOUAL returns o or 1 if the frosram is executing in the (Finos) backsrourid or foresround resfectivels. Zero is returned in a rionnFros enviromment.
SETTAEWIMTH,N sets the outrut tan width to N (default value $=8$).
SETSLOF,N sets the SLOF value used by GETVEC to N (mirimum allowable value = default velue $=3$).
7.28 SFecial-wurfose basic routirus

OUERLAY is describeg irt section 9.1.
SYG is described in section 9.2.
ABOFT and FMSET are described in section 8. 3.
XIO, ITASK゙, IENAELE, arid IEXIT are described jn section 9. 5.

7.3 Character (stream) I/0 routiries

The routines in this arn the followins section are considered to be "standard" ECFL I/O oferatiors, arid as such frovide comfatibility with other ECFL imflemeritations These routiries are loaded from the librars with a NEEMS EBCFLCB бirective.

In ECFL. "current inFut" and "current outwut" I/O chamiels are assumed to be referenced bu the read arid write oferations respectivels These oferetions treat the charimels as a contiruous stream of characters (bstes).

7.31 FINLINFUT arid FINIOUTFUT

These functions are used to ofen sfecified files for use as "stambard" ECFL I/0 chanimels. The file descriftors which thes return mas be used as arsuments to the SELECTINFUT arid SELECTOUTFUT routiries.

FFINIINFUT (NAME) oferis the sfecified file for infut in the "fast" read mode (see section 7.51), and returns a fointer to a newly created file descriftor (or an error -- see section $7+5) \quad$ as its result. NAME must be a strins cortairins a lesal sustem file name. This furiction is equivalent to OFEN (NAME, IO, FFEEAI).
=FINLOUTFUT (NAME) is similar to FINIINFUT, excert that the referenced file is oferied in the "fast" write mode this function is equivalerit to OFEN(NAMEgIO. FWFITE).

7.32 SELECTINFUT and SELECTOUTFUT

These routiries are used to establish the "current" I/0 chaririels for use by the read arid write oferations. These charinels default to the console at initialization time and thenceforth are urgated bs the user as desired.

In each of these routinesy the sinsle arsument js either a file descriftor fointer (such as returried bs FINLINFUTg etc.) or either of the sfecial descriftors CONSOLE or IUMMY which are defiried in LIEHMFi。

SELECTINFUT(FILMES) sFecjfies the currerit infut chanimey which is used for all subsequent stariard ECFL read oferations uritil the charimel is charised bs a SELECTINFUT, ENLFEAII, or ENITOINFUT command. Infut from the IUMMY file returris ENISTFEAMCH (defined in LIEHIF:

SELECTOUTFUT(FILIES) sFecifies the current outwut chaniel. which is used for all subsequent stariard BCFL write oferations uritil the chenriel is charised bs a sELECTOUTFUT, ENDWFITE, or ENITOINFUT commario. Dutfot to the IUMMY file is ismored.

7.33 CH, INCHAN, aris OUTCHAN

These are slobal variables which are used by the ECFL character (stream) I/0 routiries. Thes mas be referenced hs the usery but should rot be modified by same (except indirectls, throush the use of routiries such as FifHe GELEECTINFUT, etc.).

CH is a slobal veriable contajrims the character most recently infut bs the FincH furiction. It should be roted that FEALIN and FEAINUMBEF (see section 7.46) also modify CH, as thes emplos FillCH in their oferations. CH is majritained for each sefarate $1 / 0$ chaminel. arid js properly freserved bs SELECTINFUT.

INCHAN is a slobal variable containins the file descriftor of the "current" irifut chanriel. This js maintained frimarily for comfatibility with other ECFL imflemeritationst its value should only be accessed usins INFUT.

OUTCHAN is a slobal variable contairims the file descriftor of the "current" outrut charriel. Like INCHAN, this should normally not be accessed directlsg but rather usins OUTFUT.

7.34 INFUT anid OUTFUT

These functions take no arsumentsg and are used to access the current file descriptors for the infut arid outfut charinelsy therebs allowiris them to be saved arid (fossibls) restored at a later time.
=INFUT() retarns the latest file descriftor fassed bs SELECTINFUT.
=OUTFUT() returris the latest file descriftor fassed by SELECTOUTFUT.

7.35 FEWINL

$=$ FEWINI() is a function takins mo arsuments which attemfets to (re)fosition the current: infut charimel to the start of the file. It returns ans error encountered (see section 7.5).

7.36 ENLIFEALI. ENLWFITTE, aHID ENITTOINFUT

These furictions oferate on the currentls selected infut ano outrut charirels as riecessars arid return aris errors encountered (see section 7.5). Dutput chaniels are flushed (see section 7.54) Frior to closins.
=ENDFEALI () wi.l. close the current irifut charirel ario auseta its selection.
=ENIWFITE() will close the current outwut charimel and ariset" its selectior.
=ENITOINFUT() will close the ourrent outfut chanriel. and "uriset" its selection. It theri reofens the file and selects same as the current irifut charimel.

7.37 FOCH and WFCH

These are the basic sinsle-mharacter read and write oferations of BCFL. Thes oferate on the currently selected I/0 charimels.
$=F N C H()$ reads one character from the "current: infut chanmel. The character is masked with \#177 to remove the Farity bit and the result cofied into CH (see section 7.33) as well as returned in the normal fashion. Carriase return is converted to the ECFL newline character ('*N') ${ }^{\text {a }}$ CTFL/Z (ASCII value \#32) is converted to ENISTFEAMCH; rulls and line feeds are ismored. These sfecial interfretations mas be avoided if necessary by usins GETE (see section 7.53).

WFCH(CHAF) writes its sinsle character arsument to the "current" outfut chanmel. Newline is comverted to carriase return followed bs lime feed horizontal tabs are simulated usins the "sface" character. These sfecial interfretations mas be avoided if necessary bs usins FUTB (see section 7.53).

7.38 UNFWCH

UNFILCH() is a routime to "backspace" one character on the currently selected infut channel. Its effect is such that the next call to FillH will return the character currently jn CH . The value of CH followins the UNFICH oferationg as well. as the effect of multifle UNFWCH's is not defined in standard ECFL (in the Finmins implementationg CH is umchansed, anci each UNFIICH will "put back" one more cofs of same). For a more flexible "un-read" mechanismg see FUTEACK (section $7.54)$.

7.39 NEWLINE and NEWFAGE

These routines are used for convenience in writins common "termination" characters to the currently selected outfut chanmel. Thes have the additional effect of flushins the charriel buffer (see section 7.54).

NEWLINE() writes the rewlirie character ('*N') to the "current" outrut cherimel.

NEWFAGE() writes the rewaase character ('*F') to the "current" output chanimel.
7.4 Formatted (stream) f/0 routines

As in section 7.3, these routines are considered to be "standard" ECFL I/O oferations, and oferate on the currently selected $1 / 0$ chanmels. Thes ere loaded from the librars with
a NEEIS "ECFLC" directive.
7.41 WFITEL and WFITEN

These routines are used to output a value as a sisned decimal rumber.

WFITEI(UALUE,WIITH) will write the decimal value to an outrut field of the specified width, fillins in leadins spaces if required. Note that the value will always be frinted correctls, even if the specified field width is too small (in this case it will overflow into the minimum necessary width). A field width of 6 will alwass be larse eroush to ensure the correct alisnment of fields on the Nova.

WFITEN(UALUE) is an implementation-independent routine which writes a sisned decimal number in the minimum necessars field width. It is equivalent to WFITEI(UALUE;O).

7.42 WFITEEOCT and WFITEO

These routines are used to outfut a value as an urisisned octal rumber.

WFITEOCT(VALUE,WIITH) will write the octal value to an outfut field of the sfecified width (alwass), truncatins or fillins with leadiris zeroes as reauired.

WRITEO(UALUE) is an implementation-indefendent routine which will write an octal mumber in the minimum necessars field width for the machine in use. It is equivalent to WFITEOCT(UALUE,6) on the NOVa.

7.43 WFITEHEX and WRITEH

These routines are used to outfut a value as an unsisned hexadecimal number.

WFITEHEX(VALUE,WIITH) will write the hewadecimal value to an output field of the specified width (always), truncatirs or fillins with leadins zeroes as required.

WFITEH(UALUE) is an implementation-independent routine which will write a henariecimal number in the minimum necessars field width for the machine in use. It is eauivalent to WFITEHEX(UALUE, 4) on the Nova.

7.44 WFITTES

WRITES(STFING) takes a standard (Facked) format BCFL strins as its sinsle arsument and cofies it one character at a time to the "current" output chanimel (usins WFCH).

7.45 WFITTEF

WRITEF (STRING, VALUE1,VALUE2,...) takes a standard (facked) format ECFL strins as its first arsument and cofies it one character at a time to the "current" outfut channel. Within this "format strins", occurrences of the sequence \%-- cause outpult of the values contained (seauentially) ir the second and subseauent arsuments. The followins output formats are recosnized, outfut beins ferformed bs the indicated routines:

$\% N$	numeric value	WFITEN
$\%$ nw	numeric value	WFITEN
$\%$ nw	numic value	WFITEOCT
$\% H \omega$	numeric value	WFITEHEX
$\% s$	strins value	WFITES
$\% C$	character value	WFCH

"w irn this list refers to a field wigth specificationg which is ans lesal hewadecimal disit. A mawimum of twelve arsuments is frovided for (the format strins flus eleven inserted values). Some examples of the use of WFITEF:

```
    WFITEF("%N + %N = %N",12,34,12+34)
writes "12 + 34 = 46"
    WFITEF("%02 OCTAL =%I2 UECIMAL.",9,9)
writes "11 OCTAL = 9 [ECIMAL."
    WFITEF("%C,%C,%S'965,'B', "C,I'")
writes "A,B,C,I"
```

Note that \%Iw calls WFITEL and can overflow its field iri the same way (see section 7.41).

7.46 FEALINUMEEF and FEALIN

These functions are used to read numeric values from the currentle selected infut chanel.
=FEALINUMEER(FALIIX) returns the value of a sismed numeric character stream from the "current" infut chanmely usins the specified radie (2-16) for conversion. Leadiris sface, taby newline, and mewfase characters are ismoredg "t" and "- " cause the effrofriate action, and disits are read until a non-oisit character is encountered. If no disits are eresent, the result is zerog overflow is not detected.
$=$ FEACIN() returns the value of a sismed decimal character stream from the "current" infut chanimel. It is eauivalent to FEAINUMEEF(10).

Eoth of the above functions leave the terminatins character in CH (as a result of the calls to FIICH). In mans versions of ECFL this terminator is left in a slobal variable called

TEFMINATOF \quad To achieve comfatibilits with this tswe of imflemertationg it is merely necessars to declare a slobal as follows:

GLOEAL $\$($ TEFMINATOF: : 70 \$)
where 70 is the slobal rumber of CH .
Note also that these furictions besin readins their first infut character from the currently selected irifut charimel. If the first disit of the rumber has alreads been read bu a Frosram (which thus determines that it is a rimber)g it is riecessary to "Fut it back" to the chaririel (frobably usins UNFICH Frior to callins the mumeric infut fimetion.

7.5 FLIOS I/0 routines

The routimes arid furictions in this section frovide a comfrehensive collection of I/0 facilities which are comfatible with the Finos/FiTOS/etc. Fhilosofhs. Some minor modifications to the standard fillos "rules" have been made in the interests of ECFL compatibility, but the user should recosnize that these oferations are moniwstandard ECFL, arid as such are not easils transfortable to other implementations.

Most of these furictions return oftional error codess when Frovidedig these errors are the boolean comflement of the finos errar rumberg arid therefore will test as a riesative value. If thes are wessed directls as an arsument to the sTOF routine, afrofer error return will be made to the oferatins sustem (see section 7.22). Furictions which only return error values return zero when mo error coridition exists.

It should be rioted that inasmuch as these oferations interact directls with the oferatins sustemg thes form the basis of all. $\mathrm{I} / 0$ in this ECFL imflementation (ioe.g the "standaro" ECFll. oferations are defined in terms of these). If it is desired to use these routiries sefaratelsy thes mas be called from the librars with a NEEIS "ECFLI" directive In the descriftions which follow, familiarits with the Fillos I/O environment is assumedy 35 this will be necessary to make use of these facilities at aris rate.

7.51 OFEN ario CLOSE

These furictions are used to "ofen" and "close" oferatins ssstem files in order to allow access to same with the read and write commands.
=OFEN(FILENAME, MOME) is a fumction takiris two arsuments, a (staridard Facked format) ECFL strins riamins the file to be oferiedg arid a "mode" iridicator (described below) the file

from free storese arid imitizljzedg arid a rojrter to this vector (or en error core) js returmed as the furiotion result. This Foirter will alwass test as a fosjuive valueg aro is therefore easily differeritiated from ari error indicator A file mas be oferied in one of five "mones", arid this determines which oferations mes subsequeritls be werformed. The codes for these ofen modes are defined in the starmard lihrars headeri thes furiction as follows:

IO.FEAM ofens a file for readiris usins Fros-tufe commands (EYTEFEAII, LINEFEAL, etc.). The .FOFFEN furiction is used.
IO. FEALIWFITE ofens a file for readins arid/or writins usins FinOS-tsfe commands (ELOCKFEAL! EYTEWFITE, etc,) If the file joes rot exist, a riew orie is automatjcells created usins . CFANL. The oFEN fumetion is used.
10. WFITE ofens a file for writins usins Finos-tspe COmmarids (EYTEWFITE, LINEWFITE, etc*) ; If the fil.e does not exist, a new one is automatically ereated usims CFANI, The AFFENH fumction js used.
JO, FFEAII and IO, FWFITE are identical to IO. FEALI aria IO. WFITE resfectivelus but the files are oferied for I/0 \quad siris sirsle-bstemorjemted commands (GETE, FUTC, FUTEACK, etc.) , This is immlemented bs buildins arad using an intermel buffer for these charinels so as rot to suffer from the iriefficiencies of FHos sinsle-bste $I / 0$. Files ofened jri this manmer are referred to as "fast" files jin the Finirins ECFL sommentetion.

Note thet an ettempt to ferform I/0 to a file whose ofenins mode is imcompetible wjoth the oferation tspe will result in a ECFL rumiotime error (see AFFerioix II),
=CLOSE(FILIES) will olose the file referericed bs its fjle descriftor ersument, returmins aris error as a resulty arig restorins the file descriftor vector to free storase, Aris file which hes been ofered iri the "fast write" mode will be Butometically flushed (see section 7.54),
7.52 IIELETE añ FEENAME
=LELETE (FILENAME) tates as its sirsle arsument a (stanazrd Facked formet) ECFL strims memjris a file to be deleted. It returris aris error emcouritered as the furiction resul.t.
=FENAME (OLINAME, NEWNAME) takes two arsuments, each a (standerd Facked format) ECFL string. The file ramed bu the first arsument js remamed as sfecifjed bs the secomat arsmment + Aris error emcommtered is returned as the furiotion result.
7.53 GETB, FUTE, GETC, FUTC, CONSOLEIN, and CONSOLEOUT

These oferations all ferform sinsle-bste $1 / 0$ on "fest" files (i.e., files which have been so openedg see section 7.51). Thes do not return error codes to the user, but mas senerate rurimime error messases.
$=G E T E(F I L N E S)$ returns the next (8-bit) bute read from the file indicated by the (file descriftor fointer) zrsument. ENDSTEEAMCH is returned on end-of-ifile or reading from the unamy channel.

FUTE(FILIES,BYTE) writes the sfecified bste (the rishtmost eisht bits of the second arsument) to the file indicated bs the (file descriftor fointer) first arsument. Output to the пumim channel is isnored.
$=G E T C(F I L M E S)$ is identical to GETE exceft that the returned value is treated as an ASCII character see FillH in section 7.37).

FUTC(FILIES,CHARACTEF) is ideritical to FUTE excert that the surflied bste is treated as an ASCII character (see WFCH in section 7.37).
=CONSOLEIN() Frovides for direct infut from the console (usins GCHAFi) without requirins a file OFEN. It "echoes" the received bute and returns it as an ASCII character (see FHCH in section 7.37).

CONSOLEOUT(CHARACTEF) Frovides for direct output to the console (usins f(CHAF) without requirins a file OFEN, It Frints the sfecified byte as an ASCIJ character (see wrich in section 7.37).

7.54 FUTBACK and FLUSH

FUTBACK (FILIES,CHARACTER) mas onls reference a file which hes been ofened in the "fast read" mode (see section 7.51), Its furmetion is to (re)place a character (specified in its second arsument) "in front of "the current fosition in the file indicated bs the (file descriftor fointer) first arsument, This cheracter is not actulalls written to the fileg but rather retained in a last-ming first...out (LIFO) list, which must be emptjed by subsequent read oferations before the actual file data is asajr read, nummy chamel references are ismored.

FLUSH(FILIES) may only reference a file which has been opened in the "fast write" mode (see section 7.51). Its function is to "flush" the internal buffer (see IO.FWFITEE in section 7.51) of ans accumuated data. This function is performed automatically whenever the buffer is filled, or in resfonse to such oferetions as CLOSE, ENIWFITE, NEWLJNE, and NEWFAGE, but the user mas heve some other reeson for wishins it to
 Iumby onennel．referemoes are isnored．

7，5E EYTEFEAII and BYTEWFITE

These fumctions aresimilar to the＂read／write seghential．＂ oferations of Fincos．Thes each reamire sfecificetion of an jritermal bste adoress，which js rormelly accomplished bs shjftins a word adgress one bit left（氏1）．CONSOLE and nummy chaririel references are illesal．
＝BYTEFEAM（FILMES，AMMRESS，NUMEEF）WiJl attemFt to reaj the irmicated number of bstes from the referenced file into memors，besjminis at the sfecjfied bste adoress It returns the actusl count of butes read（or arserror code）as the fumction result，which mes be less than the mumer requested if an emo－ofofjle isencommered．Note that this differs from the Finos Fins in that encoof－file is mot treated as an error condition umtil the file is truls exhemsted．
＝BYTEWFITE（FILIES，ADMFESS，NUMEEF）will attemFt to write the indiosten mumer of butes to the referemced fileg besinimis at the specjfied bste abdress Arserror ericouritered is returred as a furiction result．

7.56 ELOCKREEAD aחロ BLOCKWKTTE

These furictions sre similer to the＂reeg／write block＂ oferetions of Rfos，werformins I／0 in blocks of 2wo worgs
 coces bo mot contan the wartial block count．CONSOLE：ama पumi chammel referemces are illesal．
＝BLOCNFEAM（FTLIESyAHLEESSyELOCN゙yNUMEEF）will attemFt to read the inoicated mumber of blocks from the sfecifieg file （stertins wjen the desjred reletive block）into memorey besimmins ot the specified worg ediress Ary error ericouritered js returreg es e furiction resul．t．
 write the irodeater mumber of blocks to the swecifjed file （stertins with the desired relstive bloct）from memores besinnins et the specjfieg word adoress．Ans error ericoumtered is returned es a furiction result．

7 ． 57 GETFOSITJON arid SETFOSJTTON

These furnetors are sjmilar to the＂GFos／sFos＂oferations of Fuos．Thes each meke use of a twoworg＂Fosjtion veotor＂y the contents of which describe a z2－wit relative bste address whthiri the swenified file（in this vectorg the first word is
 refererices are illesal．
＝GETFOSITION（FILTESFOSITTON）wjJI wow the wurrent wosition of the specified file into the EuFwleg fosition vector Ans

＝GETFOSTTION（FILTESsFOSITION）will attemft to set the current Fosition of the sfecified file to that jridiceted bs the sufwlied rosition vector．Ars error ericouritered is returned as a furiction resul．t．

7．58 LINEFEEAI and LINEWFITE

These furictions are similer to the＂read／write dine＂ oferations of Finos．Thes ezch require sfecificetion of a vector which is comstructed es estangard（recked）format BCFl．strins．CONSOLE ari numMY ohenriel referemces are i．1．1esel．
＝LINEFEAM（FILMES，GTFING）will infut 3 ＂1ine＂（usins the sternerd FHos comventions）from the sfecified file into the surflied vector In the strins which results，the ljme terminatjom character（which mes be e rull）is irmalued irs the charecter courit．Ari invisible＂（uricounted）rul．j．je alwass afrended to the lime，in keepins with the stariard strins format（see section 5． 32 ）．Note that a $135 \cdots b t e$ vector（UEC 67）will alwass be sufficient to contain an inmut
 result
 standera Fine comvertions）fron the surajied strims to the GFecified file．It is the responsibjujts of the user to еп戶斤re thet a lime terminetion cherecter js sufeljed at an affrofrjete Foint（if the steriard BCFl．wacked strins format js usedy \quad termimetime mull bste will alwess exist．Ars error emcouritered is returneg as a furnction result．

7.59 CHANGEFHASE

$=C H A N G E F H A S E(F I L E N A M E$ ，OFTION，AC2）Frovides aCcess to the
 filememe ju stemberd（weoked）BCFL strinsformats an oftion velue describins the oweration tume（mmemorides for these are defired in the stamard liorary header）y and a velue to be
 he returried as a furiction result．

$7: 6$ Mutateskine routirass

The routimes man furictions in this section erovide convenjent hese level sumort for multiteskire oferetiors which ere

 resulte are treeted iri jomticel feshion to fios $1 / 0$ errore (see section $7+5$) A NEEDS "ECFLM" direcejve is recessers to boen these routines from the 1 ibrers, frine descriwtione which follown femilierite with the rios multiteskins whilosorns is assumeg.

7.61 TASK

TASK (FOUTJNE, STACKSIZE, I.I., FFIOFITY,AFGUPENT) jS tine basjc multiteskims oferations creetirs a mew execution feth besimmas with the seecifieg routimey which is celleg with a sirsle arsument (the fifth arsmment in the TASk eell) o The rien task takes the siven I. In ang frjorits level. and executes with the swecified maximum stack size (ootained from free storese), Velues in the rense ows 5 s ere fermitted for the third and fourth arguments: ar I in of zero wfeciries that ro J. In, rumber is to be ossismed to thjs task \quad g Friority level of zero specifies that the level of the issuins task js to be used. The rew tesk execution rath is termineted bs returning from the initialls oelled routirieg or exemutims a FINJSH commendy at which time the stack sface used hs the tesk js returried to free etorese Errors eriooumtered in the TASk oferetion are considered fatsl.

7.62 XMJT, XMITWATT, arG FECEIUE:

These furitions are usen to wess onewword messesesy uejms
 commuricetion betweer tesksy or es e process irterlock faciljty.
 "messese" in the siven locetjomg whion must initisuls comtejn zero, Aris error eroomritered js returred es e furmtion result.

 messese has been FECEIUEG bs amother task.

 ocours (which mes he jmmedietels), the messese locetion is reset to zeroy the tesk js reedjedg arid the received messege j. returneg es the furiction result. No errore ere returren ns the fumatjom。

7.63 IELAM

 :Ferjod of time eausl to the sfecifjed mumber of sustem cjom "tjcke"

7.64 FRJORITY

FRIOFITY(LEUEL) is e routine which redefines the execution eriority of the issuins task to be that value specified bu its sinsle arsument (ranse 0-255).

7.65 SUSFENI and REAIIY

These routines are used to frovide for arbitrary suspension and (subseauerit) readsins of tasks, based on their assisned I. I. numbers. Specifyins an undefined I. Il. number will result in a fatal ruri-time error.

SUSFENI(I.I., is a routine which will suspend execution of the task with the specified I.II. number until subseruent execution of a FEALIY oferation. If a zero arsument is used, the issuins task. will be suspended.

FEAMY(I,I,) is a routire which will reads a task with the sfecified I.I. rumber which has beer freviously SUSFENIEd. If the task is not suspended, this routine has no effect.

7.7 Timins routines

The operations in this section provide access to timins information maintained bs the operatins ssstem. These routines are loaded from the library with a NEELS "ECFLTM directive.

7.71. LIATE and TIME

Each of these routimes returns information in a (minimum) three word vector sufelied bs the callins wrosram. Jn order that thes return velio results, it is necessers for the dete and time values to have been proferls initialized by the ssstem at start-mp time.

GATE(VECTOF) causes the current dete to be cofjed into the indiceted vector. The order of storase is das (1-31), month (1-12), छnd צear (e.s.., 1977).

TIME (VECTOR) cases the current time of-bas to be cofied into the indiceted vector, The order of storese is seconds (0-59), minutes (0-59), and hours (0-23).

7.7% ELAFSEMTME

=EIAFSEITMEE js a furiction with no arsumente which returns as its result the muber of seconds which heve elapsed since the stert of the usrent ECFI. Frosrem. Note that inteser


```
                                    | ... 」.
```

6 Mebussjms Fecjujties

* this chafter is mot yet available.

9 தweci*1 Facijuties

9.1 Gverlas routjme

The ECFl overley routine allows for a convenient interface with the oweretins sestem overlas facilities, It jepart of the steriaerd ruritime librars (roes mot require a NEEMS

9.1. Fremerins the overlas sections

The simelest overlas je thet held in ore oource fjue arig comfjled es a Ejnsle ECFL section This js compjlen with the Elobel S ano 0 switches the former to ingicete thet it je z section (riot the mein frosrem) ario the letter to imolume overlas imitializetion cone at the end of the sesmert.

If severel sections are to be loeder irto a simsle overlesy onle the finel section shomlo be compjled with the slobel o swjuch. E.

```
FLIMF,*[A E [%,I,E:FyG] M
```

Sectjoris Cy In Fy erio G are the onls ones to be comwjued with
 swjせch。

The mejn \&resioent Frosrem windef wiju use the overless must

 mot ar overlas, चra will कenerete sFecjel coge for the overles lög oferetjori.
9.12 Lowdins the overlaus

 4.72.

 of the वyFeley routire.

世mtries befined im the weedfied overles sewnents lt is therefore foewjble for overleve to mhere whomets thet wortan wonstart routjrest thisy howevery should be gore onls with extreme eantior:

Some restrictions exist on overles code efert from those meturells jmposed bs the structure (ess. ro OUEFLAY cells from withim en overles … -mee the oferetins sestem menmel. Overlas कections must mot contain NEEMS oirectives, Also, urfremiotahle faults occur if slobel routines are eallea wher the overles in which thes are oefined is rot fresent in memoris Such feults ere extremels difficult to detecto aro users whould eseroise afwrowrjete cetton when allocetjns routires to overless.

A sFeciel fumetion is wroviged to wheole the maer to commmicete directly with the oferetjns sustem without hevins to resort to essemble lanemese wrosremmins, This mechenjsm isg of courseg hishly implementetjonnerengerty ang shoula be useg werirsle; It iswert of the eternerg rurntime librare

 be m minimum wf three worgs in lemsth (vec e), will be set to the three ocoumbetor velife followjre the oferetion A function result of TFUE 3 : returned if on error exit wes

 sererate bute sadreseesy bit valuesy or whetever is remurag.
9.3 Arsmarnt jnwt functjons
 कलces to the corsole arsmment imfut mechemjems of the

 the "foresromm" or "Dectsrouma" emviroment. within the

 anoress of the resultant strins (the seme adoress as the orisjrel etrins, which hes been wermerientis mooifjeg) is returred as the furiction result. Thus the sequence

> COM F FILE : = OFEN(UNTQUENAME ("\% FCLI, CM"), IO, FEAII)
would ofer the effrofriate chi commend file,
=COMAFG(FILMES, NAMEUEC, SWITCHUEC) is B function to infut and Farse the riext arsmment from the CLI commend file FILHES is the approfrizte file descriftory NAMEVEC is a vector of sufficjert size to eccewt the arsument mame as astamosro (Focked) ECFL strjnst SWITCHUEC is a vector of lensth 32 (UEC 3j) to recoro the bit settinss of the two words of switch irformetjon (TFUE =: set, FALSE otherwises. SWJTCHUEC!O corresponis to local/slonel switon A, SWITCHVEC! to switoh B, bnib so ori. The rumber of locel or slobel switch settimse for the ourrent arsument (j. esy a court of the mumber of TruE entries in the sWITCHVEC vector) is returrea as the furiction resmlt. If ro arsuments remein in the Clu commano fileg the sfeciel value ENHSTFEAMCH (defined jn LIBHDF, BC) js returrea as the furiction result.
9.4 Network I / O furiction

A Efeciel function is wrovjoeg to ensble the user to commuricete usime the firmins retwork wrotocol ("NETCOM"). An mmersternins of this wrotocol is assmmed for the followirs deserjwtion

This mecherisem rewures the mse of monules in the NETCOM Iibrers which corresromg to the rartioujer harowsre contisuretjon jr use. These mogules, beins norimbFt in orjesfr must be logaed followins ECFLIE, LE in the loed ©ommario Eequerice: The ECFL NETCOM Furiction je loadeg with ejther a NEEMS "ECFLN" Girective (which aisellows Fhemtom recejve oferetjons) or e NEEDC "ECFLF" directive (whimin lims the whentom recejve oommerios irito the BCFL GETVEC pecilite …
 returred usire the fuTvé oferation), If both ojocetjves are שroourtereg aurime the relocetable joeg oferetjom, "BCFLFa wj.l. take wrecederice.
=NETCOMCOFCORE+IENGTH, GTATUS VEOTOFyEUFFEF stemár NETCOM owerations to कe Ferformea, The oferetion
 such z feshion thet the muber of bstes in the trememjsejon

 the initjetims wrowes mumer (!o), the reswomims wrocess

 NETCOM is returrectes the pumbiom result；A seeciel esse；

FOFTT ：$=$ NETCOM（ -1.1 ）
js Froviged to allow determiration of the cureret mCA Fort rumber．

9．5 Exteraed librars fumotione

The routimes and furictions $]$ jstecin this section are vers sfediel wrurfose in matureg ariol are rot defined jn the stamberd \quad ibrers header（LIBHMFBC），Thes are jristead described jn an adoitional（＂externed＂）library heeger （XLIEHMF，EC）which is listed in Amedndis Lu Fersors wishins to use amb of these oferations mas either referemce the eribre extericied librars with a GET＂XLIEHIR＂directiveg or merels reerodmce the desired function rame（s）in a GLobAl． declaration withim the user Frosrem \quad Note that the seme slobel rumber must be used if this second alternatjue js世m：10ッEか。

9．
These furetjore ere usec to menimulete etrinss in etamasob
 rul．＂temmimetiom womvertion je meimteimed throushout A NEFTG＂GTFFUNC＂directive js recessere to loed these functions from the Jjbrers
 बTFTNG2．which must be e vector lerse erioun to aorten same The strins lemsth is returmeg as a furnotion result．

 the wewdfieg jrozs：The jraw of the foumbebstrirs or rere if trere wes ra motwh te retured ze efuction result．

 zeroy the wherecter $i=$ wrenceg to the wtrins．The index of the irmerteg cherecter is rethrred es e furiction result．
 कt the swecjfieg ingex，stalige is extended with sface

 aneracter is returneg as e furntion result．

.

 whimíver je lese Thje whetrjrs is oowiea to oTRTNOJ.
 Jemsth of STETMGe is anineted to reflect the ectracted characters, The lemsth of STFTNGL is returaed as e furnotion resmlt.

- SCANGTF (GTFTNGJ, STETNGQ, GTFTNGZ) seकrches GTFINGZ from the कemimmins for er ocourrerice of oTkING2, If fourig oll cherecters to the left of the metch ere moved to sTRJAG1. al. mharecters to the risht of the meton (omis) remain in GTFINGS, Tf not foungs all oharedters from STFING马 are moved to STFINGI, Jeevims STFTMGZ emwts, The fumction result is TFUF: if a meton je fouriay FALSE otherwise.

9.5 Time routjrie

WRITIME (GTRTNG) wiJl write the time wno dete to the aurremtle
 J.77", followeo GS STRTNG, A NEEMS TTMFUNG" Girective js reoeseere to loed this routime from the librers.

? +3 [mble wrecision orithmetic

 the 3 inrarw

 rether than semerote mewninslese resulte


```
    the currentls welemteg enemmels*
```



```
    sewtion 7, 4G), exoewt thet s wojnter to the twombora result
    vewtor must be mrovigeg as or ersumerit. Thje rointer js
    returmed ss efuriction result.
    =#.WETTEM(A,WTMTH) js the double Frecisjorm egujvelert of
    WFTTEI (see section 7.4J).
```

9.6 The "Q" librere
\because this section is rot set avajueble.

```
月F世rgis %
```


The followime dist of words mro sembols are treated os otoms bs
 rewresentation om the Nove js siven in the first oojnmag and exemeles or esmonems are siven in the secont．

प区
E:
IET
ANLI
BFEAK
! OOF:
ENUCASE
FETURN
FINISH
GOTO
以ESULTIS
SWITCHON
TNTO
FEFEEAT
FEFEATUNTIL
REFEEATWHILE:
110
THEN
UNTIL
WHILE:
FOF
TO
EY
TEST
OR:
T. F:
UNLEGS
CASE:
WEFAUIT T
SLCT
पा: : i:

AFwwraix

ASCII cherecter codes

The followins table contains a list of all the ASCII characters recosniaed hs the BCFL combiler.

Hecjmal.	$\begin{aligned} & 7-\operatorname{bit} \\ & \text { Octal } \end{aligned}$	Character
7	007	EEL.. (bell)
8	010	BS (backsmace)
9	011	HT (horjzortal tab)
10	012	NL.. (riewlime)
11	013	UT (verticel teb)
12	014	FF (form feed)
13	015	CF (cerriose returri)
32	040	SF (sFece)
33	041	!
34	042	*
35	043	\#:
36	044	\$
37	045	\%
38	046	8
39	047	,
40	050	6
41	0 L)
42	\%2	*
43	053	$+$
44	0 S 4	,
45	O5G	\cdots
46	O6\%	-
47	057	\%
48	060	0
49	061	1.
W0	O62	2
¢j	063	3
以	064	4
\square	O6\%	5
\% \%	966	6
¢\%	067	7
56	070	8
5	071	9
58	07\%	:
9	073	$\stackrel{1}{9}$
6	074	<
¢1.	075	=-
\%	076	γ
63	077	$?$
64	100	\square
¢	101	A
6	102	E
67	1.03	C

ف	1.64	11	
69	1.0 w	E	
70	106	F	
71.	107	6	
72	110	H	
73	111	I	
74	112	J	
75	113	k	
76	11.4	L．	
77	11.5	H	
78	116	N	
79	117	0	
80	120	F＇	
81	121	Q	
82	122	F	
83	123	5	
64	124	T	
95	1． 5	U	
86	126	v	
87	1.27	W	
68	130	X	
89	131	Y	
90	132	Z	
91	133	［：	
92	134	1	
93	135	］	
94	136	m	
9	1．37		（uriderlinme）
97	1.41	e	
98	1.42	b	
99	1． 43	\square	
100	1.44	\square	
101	1． 45	e	
102	J． 46	f	
1.03	1． 47	\square	
104	1.0	n	
105	151	j．	
106	152	j	
107	15%	1.	
108	154	1.	
109	155	IiI	
110	156	r	
$1 \pm$.	1.57	0	
112	1.60	\cdots	
1． 13	16%	Q	
1.14	1.62	T	
115	1.63	E	
116	164	t．	
117	16 E	－1．	
110	166	v	
119	1．67	w	
120	170	x	
121	171	\because	
122	172	z	
124	174	；	（vertjcel ber）
126	176	A	（tilce）

This abfendix contains e cofs of the standerg ingrers hesner from the file "LTEHIF, BC";

$/ /$

$/ /$

// Finmins BCFL Sustem; "Gtanderd" Ljbrery Heeder //
// /
$/ /$ Frosrammer; $\quad \mathrm{T}$. Dument, Finmins Tractor $/ /$
// //
// Revision [rate: 24/July/77 $/ /$
// //
$/ /$

GLOEAL F GLOB

GTAET * $\%$ \% rt emtre wojnt to mesin wrocessjns

FMCET
लETVED
\because 草
जकte for कbort/rastmortem routjmes

AONEJUMF
? $1 . \forall$ * rt Goes romw locel jumw
AFTOUE:

$\%$ \% w
$\% \mathrm{Ort}$
$\% \mathrm{art}$
\therefore Qrt
$\%$ Mrt
$\because \mathrm{Mrn}$
$\% \mathrm{MPr}$
$/ / \mathrm{MPr}$
$/ / \mathrm{Hrt}$
$/ / \mathrm{Mrt}$
//Mrt
$\%$ M fri
$\% \mathrm{THn}$
$/ / \mathrm{IPra}$
$/ /$ I. fri
$\because \mathrm{r} \mathrm{fr}$
$/ / \mathrm{IPr}$
$\% 1$ rt
$\%$ I fri
β J. rt
$/ / \mathrm{I} \mathrm{rt}$
$/ / \mathrm{l}$ rt

/ $/$	1 fr
/ $/$	I fi
/ $/$	I.
$\%$	f
/ $/$].fri
\% $/$.
//	I
//	I
//	1
$/ /$	1

$\% \mathrm{I}$ fr
$\because \operatorname{rr}$
: $\mathrm{E} . / / \mathrm{r} \mathrm{rt}$
G $/ \rightarrow$ rit
$\because 3 \quad \therefore$ ritt
$\because 4 \quad \because \quad 0$ rt

$\because 5 \% \quad \therefore \mathrm{Ot}$
$\because 60$ Y \because
$\because 6 \pm \quad \because \quad \% \quad \mathrm{Fr}$
$\therefore \mathrm{Tri}$
$\because A \mathrm{Fr}$
$\rightarrow A \mathrm{fn}$
$\% \because \mathrm{fm}$

umeck atrims inte vegtor
crestes mrinterruet task
enstues friorits interrum ststem
exite or irterruft serviee routime
crestes a riew task.
transmits an jnter- tesk messese
transmjts a messase $\&$ wajte
recejves an jmter…tesk messese deless execution of curremt test. charmes current tesk wrjorite EusFenis current tesk exemution mekes reeds a susperided tesk.
ofen efile for $\mathrm{I} / 0$
close en ofen file
delete a file remame a file
rean bute from s "fawt" file

reed cher, from e "fast" file write cher to a fast pile return cher, to a fest" file flush "fost" file outeut buffer
sequential Wete read from file seauertial bste write to file
block resd from file
block write to file
reac charecter from oorsole
write character to console
read curremt file rositiom
uFgate current file wosjtion
read a lime from efile
write e line to \approx file
wutwit routine rames, entrs wurts urumion \#tect
write out slobal vector
write out all routiruemtries
write wrofile courta
कererel oetusedrs routira

「eturm बetw in a vector
retinne time of des in a vector ruturme elemseg t.jme since start

Iobe overlas, resettims meed slobels
werforms retwom\& To


```
%GHANGEFHASE Owtaoras
FHASE + SWAF =
FHAGE. SWAFWEE= = 1
FHASE:CHAIN = #100000
FHASE:CHATNDEE = #100001
```

／／SYGTEM swecipiers

GIOEAL ZEASE	$=0$	／／base edoress of ZFEL alobals
GLOEALNEASE	$=1$	$\%$ bese edoress of NFEL slonels
GLOBALEEFEAK	$=2$	／／break woint of slobals
GLOEAL TOF	$=3$	$/ /$ tor adoress of slobals
STACKEASE	＝－ 4	／bise edriess of current task stack
STACKTOF	$=5$	$/ /$ tow address of current tesk stack
STACKSFACE	$\cdots: 6$	$/ /$ sface availenle ori current stack
VECTOFSFACE	＝： 7	$/ / \pm$ \％ce avajlable from GETUEC
FROGEASE	$=8$	／＇bise echress of wrosrem NFEL
FFOGTOF＇	$=9$	／／tow edoress of frosram
ADMFESSOFGLOEAL	$=10$	$/ /$ adbress of slobel \＃N
Ammerseor	$=1.1$	／／memory refererice edoress
GEOUNTI	$=12$	／／user＂sroumb＂indicetor
SETTAEWIMTH	$=13$	
SETSLOF	$=1.4$	／GETVEC＂efficiencs＇（minimum $=$ \％${ }^{\text {\％}}$ ）

$/ /$ OFFN modes

10．EEAO
$=0 \quad / \quad$ reenamals
IO．FR世Ar，$=1 \quad / /$＂fest＂reed（buffered）
IO WETTE：
$=2 \quad / /$ write
10．FWETTE
$=3 \quad /$＂fast＂wrjte（buffered）
IO F FEARWFTTE
＝
\therefore NETCOM OF－WOW＝

```
NET.0हCY =% #177777 // "ofen" receive
NET,MFCY = #00?777 // "directed" receive
NET.XMIT = 四007777 </ trarsmj.t
NET:XCv =: #013777 // tremscejve
NET:XXMIT == #017777 // "tramsemrent" tremsmit
NET.QXHIT = #O2377% // "Q!ijek" trerismit
NET.TEFMM = 将O277%7 %// "termimaten
NET, FOFCU - #0%7777 // "Fhentom ofen" receive
NET:FrFicy - # #10z777 // "Fhertom divected" receive
```

4) MAN

Fxteraed librars header

This eweendix contajns o cofs of the externed librars heaner from the file＂XLTEHDK。EC＂。

$/ /$／$/$

$/ /$ Finimins ECFL Ss：tem：＂Exterided＂Lininars Header／／
$/ /$／$/ /$
$/$ Frosrammer：In，Inmeritg Fimmins Tractor／／
$/ / / /$
$/ /$ Fievision Irate；27／July／77／／
$/ / \quad / 1$

GLOBAL＊（XGLOE
／／Th the womments aescribins these slobal entries， $/ /$ the followirs aboreviations are used：
／／S … NEEIS＂STFFUNC＂（strins functions）
$\%$ T ．．．NEEIS＂TMMFUNC＂（tjme furictions）
$/ /$ II－－NEETS＂HELFUNC（
／／fr … the slobal references a function
／rt ．．．the slobel refererices a routime

COFYSTK	$\div 1.00$	／／S frim	copjes \quad strims
SEAECHSTE	1101．	$/ / \mathrm{Sfr}$	seerches strins for substrims
INSEETCHAF	\＄102	$/ /$ ¢ frim	inserts cherecter in strins
IMSEETSTE	$\cdots 103$	／／S frim	jrserts strims in strims
EXTEACTSTF：	$: 104$	$\% \mathrm{Sfr}$	extrocts substrims fromstrjns
SCANSTE	：105	／／S fro	
WFITIME	$: 109$	$/ / \mathrm{Tr}$ rt	Frimts formstted time arm date
In MOY	11.0	$\% \mathrm{IIPra}$	double wrecjeiom move
In．Amm	： 111	$/ / \mathrm{Ofr}$	double erecjs ion abo
I． 5 ． 518	$\because 1.2$	$/ /$ In fri	double rerecision subtrect
II．NES	3113	$\% \mathrm{O}$	coumle Frecision resete
II＋AES	：11．	$\%$ II Pra	double mrecision absolute value
H．MUL	\％115	$\% \mathrm{II}+\mathrm{ra}$	double frecision multiply
I．W．TV	：116	$\therefore \mathrm{Ofr}$	doumje erecjejon divide
II，FEM	1117	\％II fror	double rrecision remaimger
IT．REACIN	$: 118$	$\% \mathrm{Tra}$	couble Frecjsion FEARN
O．WFITEEI	－1． 1.9	$/ / \mathrm{Hrt}$	Doutele erecjsion WFITEI

＊）XGLOE

```
AmFengia :
```


ECFL.......time Error messeses

The rurntime sustem will detect verious errors urioer coriditions as described in this manual. There are 8 sucherrors, arid thes all act es "ECFL rurntime" error returrs (see section 7.22). As suchs thes will be wessed 35 arsuments to ABOFT, STOF? FOSTMORTEM, OT USEFMERUG

The sssocistion hetween error mumbers ario their meanins is as follows:

Error \#1 Stack overflow
Error \#2 Uriessjsred Elobel or local veriable
Error \#z Urimelemented facilits
Error \# \# Librars error
Error \#s Invision overplow
Error 非 Insufficjent EFace for vector (or stack)
Error \#7 Hebus peckaee not loaded
Error \#10 File use incomfatible with "OFEN" mode

When these errors are betecteg, the sustem retirris to the Frevious exeoution level with return (error) code $\# 10000+r$.

```
Amकendix -
=:-:=:=:=:=:=:=:=:=:=:=
```

\because * this afferioix is rot set zvisileble,

[^0]: $=$ LEVEL（ $)$ retarrs as j．ts result a fointer to the stack frame of the callims routime（rote that this is the serujre value

