
-

-
-

-

--

Finning BCPL System

Reference Manual

FINNING

FINNING COMPUTER SERVICES LTD. FINNING
HEAD OFFICE 555 GREAT NORTHERN WAY, VANCOUVER, Be. V5T 1 E2 • PHONE (604) 872-7474 • TELEX 04-508717 • CABLE ADDRESS "FINTRAC

Finning BCPL System

Reference Manual

Revision date of this doCl.lITe11t:
July 27, 1977

2

Table of Contents
=================

Part I -- The BCPL LansuaSe

1. . Introduction

2. LanSuaSe definition

2.1 ProSram

~.2 Elements

2.3 Expressions

2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39

2.4

2.5

2.51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59

2.6

2.61
2.62
2.63
2.64
2.65
2.66
2.67
2.68

AddressinS operators
Arithmetic operators
Relations
Shift operators
Losical operators
Conditional operator
TABLE
Constant expressions
Field selectors

Section brackets

Commands

Assisnment
Conditional commands
FOR command
Other repetitive commands
RESULTIS command and VALOF expression
SWITCHON command
Transfer of control
Compound command
Block

Declarations

Global
Manifest
Static
Dwnamic
Vector
Function and ~outine
Label
Simultaneous declaration

2~7 Miscellaneous features

2.71 GET directive
2.72 Comments and spaces
2.73 Optional swmbols and swnonwms

~-------~- FinnioS BCPL Swstem Reference Manual ----------

3.

3

2.74 SECTION and NEEDS directives

2.8 The run-time library

3.1

2.81 Basic Input-Output routines
2.82 Other useful subroutines

3.11
3.12
.3.13

3.21
3.22
3.23

an overview

COITIPi lation

Library declarations
Diagnostics
Compilation options

Loading
Execution faults
A demonstration program

Part II -- The BCPL User's Manual

4. How to IJse BCPL on the Nova

4.1 SilTlPle use

4.11. Global options
4.12 Local options
4.13 LINKBCPL

4.2 Stages of compilation

4.3 Compiling

4.31 Global options
4.32 Local options

4.4 C ross-- refe renee listing generation

4.41 Local t1ptions

4 c· t;:;' Code generation

4.51 Global options
4.52 L.ocal options
4.53 Code generation error messases

4.6 Assembly

4.61 AsseITlbly error ITlessag.es

---------- Finnins BCPL System Reference Manual ----------

4

4.7 Loadins to a save file

4.71 Load error messaSes
4.72 Loadins with overla~s

5. Code Generation

5.1 Twpes of code Senerators

5.2 Code for operators

5.21
5.22
5.23
5.24

Plus and minus
Multiplication
Division and remainder
Shifts
LoSical operations

5.3 Characters and strinss

5.31 Characters and escapes
5.32 Strins representation

5.4 Indirection and address operators

5.41 Indirection
5.42 Addresses

6. The Machine Code Interface

6.1 Store lawout

6.2 Resister allocation

6.3 Stack lawout

6.4 Global locations

6.5 Standard declarations

6.6 A machine code subroutine

6.7 Calling BCPL from machine code

7. The Standard FinninS Librarw

7.1 Librarw linkage

7.2 Basic routines

7.21
7.22
7.23
7.24
7.25
7.26

START
STOP
GETBYTE and PUTBYTE
PACKSTRING and UNPACKSTRING
LEVEL, LONGJUMP, and APTOVEC
GETVEC and PUTVEC
SYSTEM

---------- Finnins BCPL S~stem Reference Manual ----------

7.3

7.7

7.2B

7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39

7.41
7.42
7.43
7.44
7.45
7.46

7.51
7.52
7.53
7.54
7.55
7.56
7.57
7.58
7.59

7.61
7.62
7.63
7.64
7.65

7.71
7.72

5

Special-purpose basic routines

Character (stream) 1/0 routines

FINDINPUT and FINDOUTPUT
SELECTINPUT and SELECTOUTPUT
CH, INCHAN, and OUTCHAN
INPUT and OUTPUT
REWIND
ENDREAD, ENDWRITE, and ENDTOINPUT
RDCH and Wr~CH
UNRDCH
NEWLINE and NEWPAGE

Formatted (stream) 1/0 routines

WRITED and WRITEN
WRITEOCT and WRITEO
WRITEHEX and WRITEH
WRITES
WRITEF
READNUMBER and READN

RDOS 1/0 routines

OPEN and CLOSE
DELETE and RENAME
GETB, PUTB, GETC, CONSOLEIN, CONSOLEOUT
PUTBACK and FLUSH
BYTEREAD and BYTEWRITE
BLOCKREAD and BLOCKWRITE
GETPOSITION and SETPOSITION
LINEREAD and LINEWRITE
CHANGE PHASE

Multitasking routines

TASK
XMIT, XMITWAIT, and RECEIVE
DELAY
PRIORITY
SUSPEND and READY

TinJins routines

DATE and TIME
ELAPSEDTIME

8. Debugging Facilities

8.1 Standard debugginS facilities

8.2 Error returns

8.3 The ABORT routine

---------- Finnins BCPL Swstem Reference Manual ----------

6

8.4 The POSTMORTEM routine

9. Special Facilities

9.1 Overla~ routine

9.2

9.3

9.6

9.11
9.12
9.13

9.51
9.52
9.53

Part III -- Appendices

Preparins the overla~ sections
Loadins the overla~s
UsinS the overla~s

S~stem call function

Arsument input functions

Network liD function

Extended librar~ functions

StrinS manipulation
Time routine
Double precision arithmetic

The DaB librar~

A Basic s~mbols and s~non~ms

B ASCII character codes

C Standard librar~ header

D Extended librar~ header

E BCPL run-time error messages

F Librar~ modules

---------- Finning BCPL S~stem Reference Manual ----------

1. •.. 1

1 IntrtJduction --_ .. _ --_ .. _-----0' _ 0 _ _. _. _0. ____

BCPL is a pro~ramming language designed primaril~ for
non-numerical applications such as compiler-writing and general
s~stems programming. It has been used successfull~ to
implement compilers, interpreters, text editors, game pla~ing
programs, and operating s~stems. The BCPL compiler is written
in BCPL and runs on a wide variet~ of machines in~luding the
IBM 360/370 series. This document describes the i~plementation
available on· the Data General Nova series processors at
Finning.

Some of thedi~tinguishing features of BCPL are:

The s~ntax is rich, allowing a variet~ of wa~s to write
conditional branches, loops, and subroutine
definitions. This allows one to write Guite readable
programs.

The basic data object is a word (16 bits on the Nova)
with no particular disposition as to t~pe. A word ma~
be treated as. bit-pattern, a number, a subroutine
entr~ or a label. Neither the compiler nor the
run-time ~~stem makes an~ attempt to enforce t~pe
restrictions. In this respect BCPL has both the
flexibilit~ and pitfalls of machine language.

Manipulation of pointers and ~ectors is ~imple and
straightforward.

All subroutines ma~ be called recursivel~.·

This manual i~ not intended as a primer; the constructs of the
lanaua~e are presented with scant motivation and few examplesi
To use BCPL most effectivel~ on the Nova one should.ha~e a a60d
understanding of how. the machine works and be familiar with ~t~
operating s~stem. To the e~·~perienced and disciplined
programmer it is a powerful and useful language but there ~r~
few provisions for the protection of naive users •

.. - _. -.. --........... _. Finn i ng BCPL S ~s tem F~efe T'errc!'> Marrll~ 1 -.---.. ----- ------

2 ... :1.

2 Language Definition

2.1 Program

At the outermost level, a BCPL program consists of a se~uence

of declarations. To understand the meaning of a p~ogramp it
is necessary to understand the meaning of the more basic
constructs of the language from which it is made. We,
therefore, choose to describe the language from the inside
out starting with one of the most basic constructs: the
'element'.

2.2 Elements

.<element> .. -.... - <identifier> \ <number> \
TRUE \ FALSE \ ? \
<string constant> \ <character constant>

An <identifier> consists of a se~uence of letters, digits,
periods, and underlines, the first character of which must be
a letter.

A <number> is either an integer consisting of a se~uence of
decimal digits, an octal constant consisting of the symbol
't' followed by octal digits, or a hexadecimal constant
consisting of the character pair IX followed by hexadecimal
digits. The reserved words TRUE and FALSE denote -1 and 0
respectively (on a 2's complement machine) and are used to
represent the two truth values. The symbol '1' may be used
anywhere in an expression when no specific value is re~uired,
as in:

A <string constant> consists of UP to 255 characters enclosed
in string ~uotes ("). The internal character set is stripped
ASCII (on the Nova). The character" may be represented only
bs the pair *" and the character * can only be represented by
the pair **. Other characters may be represented as follows:

*N is newline
*C is carriage return
*T is horizontal tab
*S is space
*B is backspace
*P is newpage

(These are considered standard~ additional escape se~uences
are described in section 5.31)

Within a string, the se~uence

---------- Finnins BCPL Ssstem Referenre M~nll~l -------- -

2 - 2

* <newline> [<space> \ <tab> J *
is skipped. Thus, the strin~

"THIS STRING *
CONTAINS NEWLINES * AND SPACES"

is precisel~ eauivalent to

"THIS STRING CONTAINS NEWLINES AND SPACES·

The machine representation of a strins is the address of the
reSion of store where the lensth and characters of the s~rins
are packed. The packins and unpackins of strinss ma~ be done
usins the machine dependent librar~ routines PACKSTRING and
UNPACKSTRING, and individual characters in a strins can be
accessed and updated usins the librar~ rou~ines GETBYTE and
PUTBYTE (see section 2.82).

A· <character constant> consists
enclosed in character auotes (').
represented in a character constant
Other escape conventions are the
constant. A character constant is
word. Thus 'A' = 65 (on the Nova).

2. 3 E~'~F' ress ions

of a single character
The bharacter 'can be
onl~ b~ the pair *'.

same as for a strinS
riSht Justified in a

Because an identifier has no t~pe information associated with
it, the t~pe of an element (and hence an expression) is
assumed to match the t~pe reauired b~ its context.

All expressions are listed below. El, E2 and E3 represent
arbitrary expressions except as noted in the descriptions
which follow the list, and KO, Kl and K2 represent constant
expressions (whose values can be determined at compile time;
see section 2.38).

Primary

f'.Jrtction call

arithmetic

elen.ent
(E1)

El ()
El(E2,E3, •••)

El!E2
@El
!£1

£1 * E2
El / £2
[1 r~EM £2
£1 t £2

subscriF,tins
address seneration
indirection

inteSer remainder

---------- Finnins BCPL System Reference Manual ----------

relat.ior.al

shift.

conditional

+ [1
E1 - E2
-- E1
ABS E1

E1 = E2
E:I = E2
E1 <: E2
E1 <= E2
E1> E2

. E1 >= E2

2 - 3

E1·« E2
E1 » E2 .

.... E1
E1 & E2
E1 \ E2
E1 EQV E2
E1 NEQV E2

E1 -> E2, [3

abso lut.e va I'Je

not. eG'Jal

left ~hift b~ E2(>=0) bits
risht shift b~ E2(>=0) bits

not (complement)
and
inclusive or
bitwise eGuivalence
bitwise noi-eGui~~lence

(e:·,clusive or)

field selectio~ SLCT KO:K1:K2
K1 OF E1

speci ficatior.
application

table

valof VALOF COlllmand

The relative bindins power of the operators is as follows:

(hiShest, most bindins) function call
! (s'Jbsc l' ipti nS)
@ ABS OF
* I F.:EM
+
relationals
shifts (see section 2.34)

&
\
EQV NEQV
_ .. > SLCT
TABLE

(lowest, least binding) VALOF

Operators of eGual bindins power associate to the left. For
example, X + Y - Z is eGuivalent to (X + y) - Z.

In order that the rule allowins the omission of most
semicolons should work properl~, a diadic operator ma~ not be
the first s~mbol on a line.

The function call will be described with the function

2 - 4

definition in section 2.66, and the'VALOF expression will be
described with the RESULTIS command in section 2.55:

2.31.Addressin~ o~erators

A F-owerflJI pair of ope'l'ators in E~CPL are those .whichallow
one to ~enerate and use addresses. An address maw be
manipulated usin~ inte~ar arithmetic and, is indistin~u~shable
from an inte~er until it is used in a context which reGuires
an address. If the vallJe of, a variable X is the address of', 13
word instora~e, then X+l is the address of the ne~d word.

If V is .• variable, then associated with V is a sih~le word~
of memorw, which is called a cell. The contents of the cell
is called the value of V and the addres~ of the cell is
called the address of V.

An address ITlaw be IJsed bw applwinSi the indi rection operator
(!). The expression !El has, as val~e, the contents of the
cell whose address is the value of the exp~ession El. Onlw
the low-order 15 bits of El are ~sed (on the Noval.

An address nlaw be generated bw means of the operator @. The
expression @El is onlw valid if El is one of the following:

(1) An identifier (not declared bw a manifest"
declaration), 'in which case@Vis the address of
V.

(2) A subscripted eWpression, in which case the valu~
of @El!E2 is E1+E~.

(3) . An ihdi rection e~·:pressior" inwhieh case the
value of @!El is El.·

Case (1) is self~explanatorw. Case (2) "is a conseGuence lof
the waw'vectors are defined in BCPL. -A vector of size n.is a
set of n + 1 contiguous words in memorw, nu~bered 0, 1, 2,
.4.? n. The vector is identified b9 the address of wordO.
If V is an identifier associated with a vector, then the
va IIJe of Vis the add ress of wo rd 0 of the vee-to r.

: __ __ .. _- :
V *~--l---------->

~ -....... __ . :
: -----...:. .. ~ .. ':'"
I
I

f _-.--

: ---~ --
: ----_.-.. __
: _ .. _--_ _-

o

. " .. "
n

The.value of the expression V!El is the contents of c~l~'
number £1 of vector V, as one would ex~eet. The address6~
thi~ ce~l is the value of Y + £1 hen~e

-----~.-... -... -.. -.. .;- Finn i rig BCPL Sws tem Refe renee Manl..Ja I -.""-.. -----------

@(V!El) = V t E1

This relation is true whether or not the expression V!E1
happens to be valid, and whether or not V is an identifier.

Case (3) is a conseGuence of the fact that the operators @
and are inverse.

The interpretation of !El depends on context, as follows:

(1) If it appears as the left-hand side of an
assisnment statement, e.S.

! E1 : = E2

E1 is evaluated to produce the address of a cell
and E2 is stored in it

(2) @(!El) = E1 as noted above.

(3) In an~ other context E1 is evaluated and the
contents of that value, treated as an address, is
t.av..en.

Thus, the! operat.or forces one more ·contents-taking·
is normall~ demanded b~ the context.

than

As a summarizinS example, consider the four variables A, B, C
and D with initial values @C, @D, 5 and 7, respectivel~.

Then. after the assiSnment

A 1= B

their values will be @D, @D, 5, 7.

If, instead, the assisnment

A : = ! B

had been executed, then the values would have been 7, @D, 5,
7.

Final!:;, if

! A : = B

had been executed,
@D, 7.

then the values would have been @C, @D,

Note that

@A := B

is not meaninsful, since it would
addrbss associated with A, and
permanent •

call
that

for changing
association

... -.... - - _._ __ .. F i rln i nS I~ CF'I S 4<:", t . .::>IT. ~;. "" T~O 7'''',....ro.= M ~" •.•• -,

the
is

2 - 6

2.32 Arithmetic operators

The arithmetic operators *, /, REM, +, -, and ABS act on 16
bit auantities (on the Nova) interpreted as inte~ers.

The operators * and / denote inte~er multiplication and
division. The operator REM wields the inte~er remainder
after dividinS the left hand operand b~ the ri~ht hand one.
If both operands are positive the result will be positive, it
is otherwise implementation dependent (but both remainder and
dividend have the same si~n on the Nova).

The operators + and - maw be used in either a monadic or
diadic context and perform the appropriate inte~er arithmetic
operations.

The monadic operator ABS wields the absolute value of an
inte~er number.

The treatment of arithmetic overflow is undefined.

2.33 Relations

A relational operator compares the inte~er values of its two
operands and ~ields a truth-value (TRUE or FALSE) as result.
The operators are as follows:

eaual
-= not eaual
< less than
<= less than or eaual
> ~reater th~n
>= sreater than or eaual

The operators = and -= make bitwise comparisons of their
operands and 50 ma~ be used to determine the eaualit~ of
values resardless of the kind of objects thew represent.

An extended relational expression such as

'A' <= CH <= 'l'

is eauivalent to

'A' <= CH & CH <= 'l'

Note that the expession between the two relations ma~ be
evaluated twice!

2.34 Shift operators

In the
~ield

expression El« E2 (El
a non-negative integer.

» E2), E2must evaluate to
The value is E1, taken as a

---------- FinninS BCPL S~stem Reference Manual -----~----

2 - 7

bit-pattern, shifted left (or risht) b~ [2 places.
positions are filled with 0 bits.

Vacated

S~ntacticall~, the shift operators have lower precedence on
the left than relational operators but sreater precedence on
the risht. Thus, for example,

A « 10 = 14

is emuivalent to

(A«10) = 14

but

14 = A « 10

is emuivalent to

(14=A) « 10

2.35 Lasical operators

The effect of a losical operator depends on context. There
are two losical contexts: 'truth~value' and 'bit'. The
truth-value context exists whenever the result of the
expression will be interpreted immediatel~ as true or false.
In this case each sUbexpression is interpreted, from left to
risht, in truth~value context until the truth or falsehood of
the expression is'determined. Then evaluation stops.
in a truth-value context, the evaluation of

[1 \ [2 & ~E3

is as follows:

E1 is evaluated; if true the whole expression is
true, otherwise [2 is evaluated; if false the whole
expression is false, otherwise [3 is evaluated; if
false the whole expression is true, otherwise the
whole expression is false.

In a 'bit' context, the operator ~ (NOT) causes bit-b~-bit

cOfflPlementins of its operand. The other operators combine
their operands bit-bs-bit accordins to the followins table:

---------- Finnins BCPL Ssstem Reference Manual ----------

2 - 8

------------1------------------------
Operands

1
1 Operator

\ NEQV EQV
------______ " ______ ------------------

o

o

1

1

o

1

o

o

o

o

1

o

1

1

1

o
1

1

o

1

o

o

1

------------ ------------------------1

2.36 Conditional operator

The expression

El -) E2, E3

is evaluated b~ evaluatin~ El in truth-value context. If it
~ields true, then the expression has value E2, otherwise E3.
E2 and E3 are never both evaluated.

2.37 TABLE

The value of the expression

TABLE KO, Kl, K2, • • •

is the address of a static vector of cells initialised to.the
values of KO, Kl, K2, ••• ~hich must be constant
expressions.

2.38 Constant expressions

A constant expression is an~ expression involvin~ onl~

numbers, character constants, names declared b~ manifest
declara~ion, TRUE, FALSE, and all arithmetic, relational,
shift, lo~ical, and conditional operators.

2.39 Field selectors

Field selectors allow Quantities smaller than a whole word to
be accessed with reasonable convenience and efficienc~. A
sele6tor is applied to a pointer usin~ the operator OF (or
::). The selector has three components: size, shift, and
offset. The size is the number of bits in the field; the
shift is the number of bits between the ri~htmost bit of the
field and the ri~ht hand end of the word ciontainin~ it; the

----~----- FinninS BCPL Swstem Reference Manual ----------

2 - 9

offset is the position of the word containing the field
relative to the pointer.

The precedence of OF is the same as that of the subscrip~ion
operator (!), but its left operand (the selector) must be a
constant expression. A selector is specified using the
operator SLCT, whose s~ntax is as follows:

<constant expression> ::= SLCT <size>:<shift>:<offset> \
SLCT <size>:<shift> \
SLCT <size>

where <size>, <shift>, and <offset> are constant
expressions. Unless explicitl~ specified, the shift and
offset values are assumed to be zero. A size of zero
indicates that the field extends to the left hand end of the
word. Selectors are best defined using manifest declarations
(see section 2.62).

A selector application ma~ be used on the left hand side of
an assignment and in an~ other context where an expression
ma~ be used, except as the operand of @. In the assignment

F OF V := E

the appropriate number of bits from the right hand end of E
are assigned to the specified field. When

F OF V

is evaluated in an~ other context, the specified field is
extracted and shifted so as to appear at the right hand end
of the result.

Judicious use of field selectors rather than inline shifting
(e.~., FLAGS OF WORD rather than (WORD! 2»> 6 & t17) will
increase readabilit~, and can s~bstantiall~ decrease probl~ms
in rearranging data structur~s or transferring to a machine
witH a different word size. Opportunities for compiler
optimization are also improved.

2.4 Section brackets

Blocks, compound commands, and some other
constructions use the s~mbols $(and $) which
opening and closing section brackets.

s~ntactic

are called

A section bracket ma~ be tagged with a seauence of lettefs,
digi'ts, periods, and underlines (the same characters as are
used in identifiers). A section bracket immediatel~ follo~ed
b~ a space or newline is, in effect, tagged with null.

An openins
identically

section bracket can
tagged closing bracket.

be matched onl~ b~ an
When the compiler finds

---------- Finning BCPL System Reference Manu~l ----------

2 - 10

a closin~ section bracket with a non-null ta~, if the nearest
openin~ brack~t (smallest currentl~ open section) does not
match, that section is closed and the process repeats until a
matchin~ openin~ section bracket is found.

Thus itis impossible to write sections which areoverlappin~
(not nested).

The complete set of commands is shown here, with E, El, E2,
and K denotin~ expressions, C, C1 and C2 denotin~ commands,
and Dl and D2 denotin~ declarations.

routine call

assi~nment

conditional

repetitive

reslJltis

switchon

t'ransfer

compolJnd

block

E(El, E2, •••)
EO

(left hand side list> := (expression list>

IF E THEN C
UNLESS E THEN C
TEST E THEN Cl OR C2

WHILE E DO C
UNTIL E DO C
C r~EPEAT
C r~EPEATWH I LE E
C f.:EPEATUNTIL E
FOR N - El TO E2 BY K DO C
FOR N = El TO E2 DO C

r~ESUL TIS E

SWITCHON E INTO (compound command>

GOTO E
FINISH
F.:ETUr.:N
BF~EAK
L.OOP
ENDCASE

Discussion of the routine call is deferred until section 2.66
where function and routine declarations are described.

The command E1 := E2 causes the value of E2 to be stored into
the cell specified bs El. El must have one of the following

......... , Finrtins DCPL S~stem F~eference Manual - - ..

2 - 11

forms:

(1) The identifier ofa variable
(2) A subscripted expression
(3) AM indirection expression
(4) A field selection expression

<identifier>
£31E4
1E3
K OF E3

In case (1) the cell belonging to the identifier is updated.~
Cases (2) and (3) have been described in section 2.31, ~nd
case (4) was discussed in section 2.39.

A list of assignments mas be written thus:

where Ei and Fi are expressions. This is eGuivalent to

E1 0- F1 .-
E~ 0- F2 ~ t-

• t 0

En .- Fn .-
2.52 Conditional commands

IF E
UNLESS
TEST E

THEN C1
E THEN C2

THEN C1 OR C2

Expression E is evaluated in truth-value context. Command [1
is executed if E is true, otherwise the command C2 is
executed.

2.53 FOR command

FOR N = E1 TO £2 BY K DO C

N must be an identifier and K must be
This command will be described bs
block.

a constant expression.
showing an eGuivalent

$(

$)

LET N, t - E1, E2
UNTIL N > t DO $(

[
N != N + K

$)

If the value of K is negative the relation N > t is replaced
by N ~ t. The declaration

LET N, t - E1, E2

declares two new cells with identifiers Nand t; t being a

---------- Finning BCPL SYstem Reference Manual ----------

2 - 12

new identifier that does not occur in C. Note that the
control variable N is not available outside the scope of the
command.

The conlmand

FOR N = £1 TO £2 DO C

is eGuivalent to

FOR N - E1 TO £2 BY 1 DO C

2.54 Other repetitive commands

WHILE £ DO C
UNTIL E DO C
C F;:£PEAT
C REPEATWHILE £
C R£PEATUNTIL E

Command C is executed repeatedl~ until condition E becomes
true or false as implied b~ the command. If the condition
precedes the command (WHILE, UNTIL) the test will be made
before each execution of C. If it follows the command
(REPEATWHILE, REPEATUNTIL), the test will be made after each
execution of C, and 50 C is executed at least once. In the
case ':Jf

C F~EPEAT

there is no condition
or RESULTIS command
command or block.

and termination
in C. C will

must be b~ a transfer
usuall~ be a compound

Within REPEAT, REPEATWHILE, and REPEATUNTIL, C is taken as
short as possible. Thus, for example

IF E THEN C REPEAT

IF [THEN $(C REPEAT $)

and

E := VAL OF C REPEAT

i. s t h '"~ ~; a nl Ii:' a '5

E := VALor $(C REPEAT $)

::;~,~·:;:t.~·?,,: i?Q'!',:;, rc·?!"IC':'·? j·'i.:lrtUi:::.l.

\Jt-lL.OF C

where C is a command (usuall~ a compound command or block) is
called a VALOF expression. It is evaluated b~ executins the
commands (and declarations) in C until 3 RESULTIS command

:i. s 1£·~I·IC0l.1nte T'eij. Thf.~

becomes the value of
t~e commands within C

expression E is evaluated, its value
the VAL.OF expression and execution of

A VALOr 0xpression must co~tain one or more RESULTIS commands

Tr ~h~ case nf ~~ti~ed V~L.Or expressions, the RESUL.TIS command
t f.~ ''-' f'i'. i", ."~t '::" s· ::) r,::' ':! t. ;"',f' :i. 1"1 n.: T' iT! os· t ,..) AL. DF E' ::< ", 1" (~S;· !:; i on Cc,int a i n i ns
:L t. ,

SWITCHON ~ INTO ~compound command>

~hpre the cnp~~u~d co~man~ ~ontains labels of the form

'::: ;~~~ ~::; E .::: ~::. -~) I""i .~:. ,t (;:: r~ 't. (:;:. ~.,: F· r- ,~~ -:;. ';::.], () n > ~
D;' DEFi:·,i..Ji...·j:~

';" ;",,::. C'::: : r F'::·:::· . Coi":l ::, ·f:i. rs· t eva 11..1i:'3 t,€~d i'! nd , :i.f
l~ :"':i. c h :"":;5 '''. ::. <: c ri·;;;. t. i'i r'i t. l.-.J it h t h€·:, "'; am r;.:' \j a J u,?::' , thE·: n
resumed at that label; otherwise, if there

",: C f~ (:l E E' :-: :i. ~: t ~:

t': ;.; f:! C fYU. 0 n i s
is a DEFf~UL.T

J8bel~ then execution
:i. -::; n <) t , r:-.1 >~ c·:' C 1,,1 ~-.. :i. 0 rl i. ~::.

IS continued from there, and if there
resumed Just after the end of the

-:;I"I.T'1";·:·I--ION c·crr'ITI.;;::ncj.,

The 5witch is ~mplemented
s23rch or a binars search
of ~ase cOi"~tants.

2.57 T~2nsfer of contrel

i:·;ClTD [
r:' I r"! I ~:; II
F<ElUF:N
r:F~Lt~K:

LOOP
ENIiCM;E

i:lS ;;, di ·j'i:: .. 'ct
de:="endins

':;;,wi tci!,
01"1 the number and ranSe

The command GOlD E interprets the value of E as an address,
and transfers control to that address, see section 2.67. The

....................... -........... Fin '''I iris r:CF'L ~; '::!':;;. t €:'m F< e fer E,'nc e r'l a nua 1 -..... _ ..

2··· J4

command FINISH causes an implementation dependent termination
of the entire program. RETURN causes control to return to
the caller of a routine. BREAK causes execution to be
resumed at the point Just after the smallest textuallw
enclosing repetitive command. The repetitive commands are
those with the following kew words:

UNTIL, WHILE, REPEAT, REPEATWHILE, REPEATUNTIL, and FOR

LOOP causes execution to be resumed at the point Just before
the end of the bod~ of a repetitive command. For a FOR
command it is the point where the control variable is
incremented, and for the other repetitive commands it is
where the condition (if anw) is tested. ENDCASE causes
execution to be resumed at the point Just after the smallest
enclosing SWITCHON command.

2.58 Compound command

A compound command is a se~uence of commands enclosed in
section brackets.

••• $)

The commands C1, C2, • • • are executed in se~uence •

Th~' operator
s~ntacticall~
e>:ampl e,

<> has a similar meaning to semicolon
more binding than DO, OR, REPEAT, etc.

IF E DO C1 <> C2

is e~IJivalent to

IF E DO $(C1

2.59 Block

blJt is
Foy'

A block is a se~uence of declarations followed b~ a se~uence
of commands enclosed together in section brackets.

$(D1; D2; ••• • • • $)

The declaY'ations D1, D2, ••• and the cOllllllcH'lds Cl, C2, •••
are executed in seQuence. The scope of an identifier (i.e.,
the resion of program where the identifier is known) declared
in a declaration is the declaration itself (to allow
recursive definition), the subse~uent declarations and the
commands of the block. Notice that the scope does not
include earlier declarations or extend outside the block.

- -,. -" -_ _.... F' i nn i ng r: CPL. S ~s tE·m F.:ef e rence Manu a I _ .. _ .. _ .. -_ -- -- -- _ .. _-

2 - 15

2.6 DeclarationS

Everw identifier used in a pro~ram must be declared
explicitlw. There are 10 distinct declarations in BCPL:

~lobal, manifest, static, dynamic, vector, function,
routine, formal parameter, label and for-loop control
variable.

The declaration of formal parameters is covered in sections
2.66 and 2.67, and the for-loop is described in section 2.53

The scope cif identifiers declared at the head of ~ block is
described in the previous section.

2.61 Gldbal

A BCPL proSram need not be compiled in on. piece. The sole
means of communication between separately compiled se~ments
of pro~ram is the ~lobal vector. The declaration

GLOBAL $(Name S constant-expression $)

associates the identifier Name with the specified location in
the slobal vector. Thus Name identifies a static cell which
maw be accessed by Name or by any other identifier associated
with the same ~lobal vector location.

Global declarations may be combined.

GLOBAL $(N1:K1; N2:K2; ••• ; Nn:Kn $)

is eGuivalent to

2.62 Manifest

GLOBAL
GLOBAL
• • •

$(N1:K1 $)

$(N2SK2 $)

GLOBAL $(NnSKn $)

An identifier may be associated with a constant bw the
declaration

MANIFEST $(Name = constant-expression $)

An identifier declared bw a manifest declaration may only be
used in cbntexts where a constant would be allowable. It maw
not, for instance, appear on the left hand side of an
assignment. Like slobal declarations, manifest declarations
maw be combined.

MANIFEST $(N1=Kl; N2=K2; ••• ; Nn=Kn 5)

---------- Finnins BCPL Swstem Reference Manual ----------

is eGIJivalent to

2.63 Static

2 .- 16

MANIFEST $(
MANIFEST $(

•••

Nl=Kl $)
N2=K2 $)

MANIFEST $(Nn=Kn $)

A variable ma~ be declared and siven an initial value b~ the
declaration

STATIC $(Name = constant-expression $)

The variable that is declared is static, that is it has a
cell perman.ntl~ allocated to it throu.hout the execution of
the program (even when cont rol is riot d~nalTlicall ~ wi thin the
scope of the declaration). Like .lobal declarations, static
declarations ma~ be combined.

STATIC $(Nl=Kl; N2=K2; . Nn=Kn $) •• + ,

is eGIJivalent to

STATIC $(Nl=Kl $)
STATIC $(N2=K2 $)

•••
STATIC $(Nn=Kn $)

2.64D':1namic

The declaration

LET Nl., N2, ••• ,' Nn ::: E1 p. E2, ••• , En

creates d':1namic cells and associates with them the
identifiers N1, N2, ••• , Nn. These cells are initialized to
the values of £1, E2, ••• , En. The space reserved for these
cells is released when the block in which the declaration
appears is left.

2.65 Vector

The declaration

L.ET N ::: VEe K

whe~e K is a constant expression, creates a d~namic vector b~
reserving K + 1 cells of contiguous storage in the stack,
plus one cell which is associated with the identifier N.
Execution of the declaration causes the value of N to become
the address of the K +1 cells. The storage allocated is
released when the block is left.

----~----- Finning BCPL S~stemReference Manual ----------

2 - 17

2.66 Function and routine

The declaration

LET N(P1, P2, ••• , Pm) = E

declares a function named N with m parameters. Th~
parentheses are reauired even if m = O. A parameter name has
the same swntax as an identifier, and its scope is the
exp~.ssion E. A routine declaration is similar ~o a function
declaration except that its bodw is a com~and.

LET N(P1, P2, ••• , Pm) BE C

If either decl~ration is within the scope of a ~lobal
declaration for N, then th.~lobal cell will be i~itialized
to the entrw address of the function (or routirie) before
execution of the program. Thus the functiOn maw be a~ces~ed
from anwwhere. Otherwise, astatic cel~ is. created, is .

. associated with the identifier N,and i~ iMitialize4 to the
entrw address~

the function or routine is invoked bw the call

EO(E1, E2, ••• , Em)

where expression EO evalua~es to the entrw address. .In
particula~~ within the scope of the identifierN, the
function or routine maw ~e invoked bw the call

N(E1, E2, ••• , Em)

provided the valu. of N has not been chan~ed during th~

execution of the pro~ram.

Each valu~ passed as a parameter is co~ied into a newlw
. created cell which is then associated with the corres~o~din~
paramete~ name. . The cellS are conse~utive in store and so
the ar~ument list behaves like an initialised dwriamic
vector. The space allocated for the ar~ument list is'
released when ev.luation of the call is complete. Notic~
that arsuments arealwaws passed bw value; the value passed,
however, ma~ bean address.

A function call is a call in the context of an expression.
Ifa function is bein~ called, the result is the value of E.
A routine call is a call in the context of a command and maw
be used to call either a function or a routine. A routine
call has no result; if called ~s an expression, the result is
undefined.

No dwnamic (or vector or formal) variable that is declared
outside the function maw be ~eferred to from within E.

---------- Finning BCPL Swstem Reference Manual -------~--

2 - 18

2.67 Label

A label ma~ be declared b~

Name:

A label declaration ma~ precede an~ command or label
declaration, but ma~ not precede an~ other form of
declaration. Exactl~ as in the case of a function or
routine, a label declaration creates a static cell if it is
not within the scope of a Slobal declaration of the same
identifier. The local or Slobal cell is initialised befo~e
execution with the address of the point in the prosram
.labelled, 50 that the command

GO TO Name

has the expected effect.

The scope of a label depends on its context.
smallest of the followins reSions of proSram:

It is the

(1) the command seGuence of the smallest textuall~
en~losinS block,

(2) the bod~ of the smallest textuall~ enclosins
VALOF expression or routine,

(3) the bod~ of the smallest enclosins FOR command.

variables and passed as
not useful for them to be

be assisned tn slobal

Labels ma~ be assisned to
parameters. It is, in seneral,
declared slobal, but the~ can
variables.

Usins a GOTO command to transfer to a label which is outside
the current function or routine will produce undefined
(chaotic) results. Such transfers can onl~ be performed
usins the librar~ functions LEVEL and LONGJUMP which are
described in section 2.82

2.68 Simultaneous declaration

An~ decliration of the form

LET • • •

ma~ be followed b~ one or more declarations of the form

AND • • •

where an~ construct which ma~ follow LET ma~ follow AND. As
far as scope is concerned, such a collection of declarations
is treated like a sinsle declaration. This makes it
possible, for example, for two routines to know each other
without recourse to the slobal vector.

---------- Finnins BCPL S~stem Reference Manual ----------

2 - 19

2.7 Miscellaneous features

2.71 GET directive

It is possible to inQlude a file in the source text of a
proSram ~sins a GET directive of the form:

GET "string-

On the Nova, text of the GET directive is replaced b~ the
text of the file whose filename is ·string S (note that the
filename extension ".BC· is forced, resardless of an~
specified). A GET directive should appear on a line b~

itself.

2.72 Comments and spaces

The character pair II introduces a comment. All characters
from (and includins) II UP to but not including the character
Inewline l will be iSnored b~ the compiler. The character
pair 1* introduces a comment which is terminated b~ the pair
*1. This form of comment ma~ extend over several lines.

Blank lines are also ignored.

Space and tab characters ma~ be inserted freel~ except inside
a basic s~mbol, but space or tab characters are reGuired to
separate identifiers or s~stem words from adJoininS
identifiers or s~stem words.

2.73 Optional s~mbols and s~non~ms

The reserved words DO and THEN are s~non~ms in BCPL. Most
implementations of BCPL also allow other s~non~ms and a list
of the s~non~ms for the Nova implementation can be found in
Appendix A.

In order to make BCPL prosrams easier to read and to write,
the compiler ~llows the s~ntax rules to be relaxed in certain
cases. The wtird DO (or THEN) ma~ be omitted whenever it is
immediatel~ followed b~ the ke~word of a command (e.s.
RESVlTIS). An~ semicolon occurins as the last s~mbol of a
line ma~ be omitted. As an example, the followins two
proSrams are eGuivalent:

IF A = 0 DO GOTO x;
A := A - 1;

IF A = 0 GOTO X
A := A - 1

---------- FinninS BCPL System Reference Manual ----------

2 - 20

2.74 SECTION and NEEDS directives

SECTION and NEEDS directives can onl~ occur at the ver~ start
of the BCPL proSram (before an~ comm.nds, definitions, or GET
directives). Each directive must be followed b~ a strins
containinS a module name (e.S., an external s~mbol in loader
terms). An~ number of these directives can appear at the
besinnins.

SECTION Bname" defines a module name to be associated with
the entr~ point of the current sesmentof code. SECTION
directives are onl~ meaninSful at the start of a seSment of
code intended for inclusion in a librar~.

NEEDS "nameB specifies a module that is used b~ the current
seSment of code and that this module should be loaded from
an~ librar~ scanned unless the name has alread~ been defined
(in another section of code).

2.8 The run-time librar~

This section summarizes a number of the librar~functions and
routines available on the Nova implementation of BCPL. The
routines decribed here are considered standard in that the~
will usuall~ be found on an~ implementation. A number of
additional routines, as well as more complete descriptions of
these routines, are found in section 7.

2.81 Basic Input-OutPut routines

The input/outPut
simple, and are
routine calls.

facilities of BCPL are ~uite primitive and
alwa~s invoked b~ means of function or

FINDINPUTCfilenaffie) is a function takins a filename strins as
argument and returning a file descriptor to be used b~ the
input routines. The file is opened for "fastB readins. If
the file does not exist, the result is a neSative error
number.

SElECTINPUT(file-descriptor) is a routine which selects the
specified input file for future readins.

RDCHe) is a function whose result is the next character from
the currentl~ selected input file. If the file is exhausted,
it sields ENDSTREAMCH(=-l). The variable CH contains this
character when the routine exits. See section 7.46 for a
comment reSardinS compatibilit~ with other implementations.

UNRDCH() is a routine that will cause the next call of RDCH
to~ield the same character that it returned on its last call
for the currentl~ selected input file.

---------- Finnins BCPL SYstem Reference Manual ----------

2 - 21

REWINDC) repositions the currentls selected input file to
point to the first record.

ENDREADC) closes the currentls selected input file.

FINDOUTPUT(filename) is a function taking a filename string
as argument and returning a file descriptor to be used b~ the
output routines. The file is opened for ·fast" writing. If
the file alread~ exists? the subseQuent output is appended to
it; otherwise a file of the specified name is created.

SELECTOUTPUT(file-descriptor) is a routine which selects the
specified output file for future writing.

WRCHCC) will write the character C to the currentl~ selected
output file.

ENDWRITE() closes the currentl~ selected output file.

ENDTOINPUT() closes the currentl~ selected output file and
reopens it for reading.

INPUT() is a function that will return with the currentl~
selected input file descriptor.

OUTPUTe) is a function that will return with the currentl~
selected output file descriptor.

2.82 Other useful subroutines

PACKSTRING(V,S) is a function which packs the characters V!1
to V!N into S, where N = V!O & 255. The result is the
subscript of the highest element of S used (i.e. N/2 on the
Nova).

UNPACKSTRINGCS,V) is a routine to unpack characters from the
string S into V!1 to V!N when N is the length of the string,
and set V!O = N.

GETBYTE(S,I)
of the string
string is its

is a function whose result is the Ith character
B~ convention the zeroth character of a

length.

PUTBYTE(S,I,C) is a routine which will update the Ith
character of the string S with C.

WRITES(S) writes the string S to the current output stream.

NEWLINE() writes a newline to the current output stream.

WRITEDCN,D) writes the integer N to the current output stream
risht Justified in a field of width D places. If D is too
small the number i~ written correctl~ usins as man~

characters as necessar~.

---------- Finnins BCPL Ssstem Reference Manual ----------

WRITEN(N) is eGuivalent to WRITEDCN,O).

F~EADN ()
current
CH.

is a function that reads a decimal number from the
input stream leavin~ the terminatin~ character in

WRITEOCTCN,D) writes the D least si~nificant octal digits of
N to the current output stream.

WRITEHEXCN,D) writes the D least significant hexadecimal
digits of N to the current output stream.

WRITEF(FORMAT,A,B, •••) is a routine to output A,B, ••• to
the current output stream according to FORMAT. The FORMAT
string is copied to the stream until the end is reached or
the warning character 'X' is encountered. The character
following the 'X' defines the format of the next value to be
printed as follows:

X% print ' %'
%8 print as a string
;~C print as a character
i~N print as a integer (lTd n i mUlTI width)
%In print as a integer width n
:"~On print as an octal number width n
:7.Xn print as a he:":adec i ITla I nUlTlbe T' width n

In the last three cases
single hexadecimal digit.

the width n is represented
The routine takes the format

b!:; a
and a

maximum of 11 additional arguments.

MAPSTORE() prints a
function and routine
va ri ab 1 es u":;ed.

map of the program area includin~

names, and the values of all global

BACKTRACE() prints a summar!:; of the d!:;namic stack ~ivin~ the
names of all functions and routines currentl!:; active and the
values of the first few local variables of each.

ABORT(CODE) is called automaticall!:; b!:; the s!:;stem after most
faults. It can call BACKTRACE and MAPSTORE in order to
provide the user with some postmortem information.

STOP(N) will terminate the Job step, returnin~ a completion
code N,

LEVELC) is a function whose result is the current
the run-time stack pointer for use with LONGJUMP.

value of
The stack

pointer changes onl~ when a function or routine is entered or
J. eft..

LONGJUMP(P,L) will cause a non-local Jump to the label L at
the activation level given b!:; the stack pointer P.

AF'TO' .. IEC (F, N) is
a T'gulTlent"s 1".1 and

a function which will
N where V is a vector of

F
N.

to two
APTOVEC

---------- Finnins BCPL S~stem Reference Manual ----------

2 - 23

could (ille~allw) be defined in BCPL as follows:

LET APTOVEC(F,N) = VAL OF $(
LET V = VEC N
RESULTIS F(V,N)

$)

- - -

---------- Finnins BCPL Swsiem Reference Manual ----~--~--.

3 - 1

3 BCPl on the Nova -- An Overview
===============================

The files relatin~ to the s~stem are listed below. Users can
link to the files in the normal wa~ or use the ClI commands in
LINKBCPL.MC which can be executed b~ t~pin~:

<master-director~>:LINKBCPL

The relevant files are:

LINKBCPL.MC
BCPL.SV
BCOMP.SV(.OL)
BXREF.SV
BCGN2.SV
BCDEB.RB
BCPLIB.LB
(X)lIBHDR.BC

CLI macro for linkins
the command prOSram
the compiler
the cross-reference pro~ram
the code seneratof
the debusSinS packa~e
the BCPL librar~
the standard librar~ headers

Further details are siven in section 4.1.

3.1 Compilation

The BCPL compiler is usuall~ invoked b~ use of the command
proSram BCPL.SV. This proSram calls the compiler + code
generator + assembler to compile a BCPL source proSram into a
relocatable binar~ file. A typical command mi~ht be

BCPL/S PROG $LPT/L

Further details are ~iven in section 4.1.

3.11 Librar~ declarations

The directive
GET "LIBHDR"

will insert the standard library declarations from the file
whose filename is LIBHDR.BC. A listins of the standard
library header can be found in Appendix C. Note also that
many of the standard support routines reauire the presence of
a "NEEDS· directive in order to load them from the library.
The use of XLIBHDR is discussed in section 9.5.

3.12 Dia~nostics

The BCPL compiler has three passes: parse,
code-senerate. There are correspondinSly
err~r diasnostic.

translate
three kinds

---------- Finnins BCPL S~stem Reference Manual ----------

and
of

3 - 2

A parse diagnostic occurs when a relativel~ simple s~ntactic
error is detected during the first pass of compilation. The
messaSe includes a portion of the source program to give the
context and a brief description of the probable error. The
compiler usuall~ skips to the end of the line before
continuing the parse. later error messages should be viewed
with suspicion since the automatic recover~ is often not ver~
successful.

Translation phase diagnostics occur in the second pass of
compilation and report errors such as the use of an
undeclared identifier. Each error is briefl~ described and a
representation of the relevant portion of the parse tree is
printed.

Code-generation diasnostics are rare and usuall~ result from
table overflows or compiler errors.

3.13 Compilation options

The compilation of a proSram can be controlled bw various
compilation options passed to the compiler bw the ClI program
(in COM.CM). The options for the code-generator are
Senerally different from those of the compiler, and not all
of the options can be specified to BCPl.SV. Some users maw
therefore need to run the compiler (BCOMP.SV) or the code
senerator (BCGN2.SV) separatelw in some circumstances. All
options are specified by single letters and some are
primaril~ debugginS aids for compiler maintenance. Further
details are given in sections 4.1 - 4.4.

3.2 Execution

When the program has been compiled and subse~uently loaded
into a save file it can be executed directl~. When running
under the ClI it can be run like any other save file. This
section describes loading and running a program.

3.21 Loading

Loading is achieved bw use of the standard relocatable loader
RlDR. The library BCPlIB.lB should be scanned last to load
modules that define outstanding external names. Further
details are siven in sections 4.6 and 4.7. Note that a
minimum of two tasks ("2/K") must be specified to RlDR, even
if the program is not a multi-taskins one.

3.22 Execution faults

In the event of an execution fault such as division b~ zero
or stack overflow the routine ABORT is called. This will

---------- Finnins BCPl SYstem Reference Manual ----------

3 - 3

print the fault number and, dependinS on bits set in PM.SET,
ma~ be followed b~ a summar~ of the run-time stack (printed
out b~ BACKTRACE) and a map of the program store and slobals
(printed out bw MAPSTORE). This output is alwa~s sent to the
file "$lPTB. BCPl run-time error messages are listed in
Appendix D.

3.23 A demonstration program

Consider the following program held in the file TESTPROG.BC:

II THIS IS A DEMONSTRATION BCPl PROGRAM

NEEDS "BCPlC·

GET ulIBHDR"

II THIS INSERTS THE STANDARD GLOBAL DECLARATION

GLOBAL $(TREE:I00; TREEP:I01 $)

STATIC $(COUNT=O; MIN=O; MAX=O $)

MANIFEST $(II THE FOLLOWING NAMES WILL
II BE USED AS SELECTORS

VAl=O; lEFT=I; RIGHT=2
$)

II THE FUNCTIONS PUT, LIST AND SUMCDEFINED BELOW)
II OPERATE ON A TREE STRUCTURE WHOSE ROOT IS HELD
II IN TREE. IF T IS A BRANCH IN THIS TREE THEN
II EITHER T=O
II OR T POINTS TO A TREE NODE AND VALlT IS AN
II INTEGERCK SAY), LEFT!T IS A BRANCH CONTAINING
II NUMBERS <K AND RIGHTlT IS A BRANCH CONTAINING
II NUMBERS)=K.

LET PUTCK, P) BE II THE ROUTINE PUT WILL ADD A NODE TO THE
II TREE WHOSE ROOT IS POINTED TO BY P.

$(P UNTIL !P=O DO
$(LET T = lP

P := K<VALlT -) @LEFT!T, @RIGHTlT $)

VAL!TREEP, LEFT!TREEP, RIGHT!TREEP := K, 0, 0
!P := TREEP
TREEP := TREEP + 3 $)P

AND LISTeT) BE II LIST THE NUMBERS HELD IN THE TREE T
UNLESS T=O DO $(LIST(LEFT!T)

IF COUNT REM 10 = 0 DO NEWLINEC)
COUNT := COUNT + 1
WRITEF(" %16", VAL!T)
LIST(RIGHT!T) $)

---------- Finnins BCPL Swstem Reference Manual ----------

3 - 4

AND SUM(T) - T=O -) 0,
VAL!T{MIN -) SUM(RIGHT!T),
VAL!T)MAX -) SUM(LEFT!T),
VAL!TtSUM(LEFT!T)tSUM(RIGHT!T)

AND START() BE $(1

LET V = VEC 600
TREE, TREEP := 0, V
RDCH() II THIS IS A CONVENIENT WAY

II TO ORGANISE A TEST PROqRAM
$(SWITCHON CH INTO $(S

CASE 'Q': CASE ENDSTREAMCH:
WRITES(D*NEND OF TEST*N")
FINISH

CASE 'P': PUT(READNC), @TREE) II PUT A NUMBER
LOOP

CASE 'L': NEWLINEC) II LIST THE NUMBERS IN THE TREE
COUNT := 0
LISTCTREE)
NEWLINE()

CASE'S': MIN := READN()
MAX := READN()
WRITEF(D*NSUM OF NUMBERS FROM %N TO %N IS %N*ND,

MIN, MAX, SUMCTREE»
LOOP

CASE 'M'I MAPSTOREC); ENDCASE II PRINT A STORE MAP

CASE 'Z': TREE := 0; WRITES(D*NTREE CLEARED*N"); ENDCASE

CASE '*S'! CASE '*N': ENDCASE II IGNORE SPACE AND NEWLINE

DEFAULT: WRITEFCD*NBAD CH '%C'*N", CH); ENDCASE

RDCH()
$) REPEAT

$)1 II END OF PROGRAM

A tspical console dialogue to compile, load, and run the
above program stored in the file TESTPROG.BC is reproduced
below.

» BCPL TESTPROG
* * * BCPL FILE 'TESTPROG.BC' COMPILED AT (time/date)

FINNING BCPL COMPILERy REVISION 17.7.77
TREE SIZE = 2713

---------- Finning BCPL Ssstem Reference Manual ----------

3 - 5

NOVA 2 CODE GENERATOR, REVISION 7.6.77
PROGRAM SIZE IS 348 WORDS •

• TITLE TESTPROG; MAIN PROGRAM (NO OVERLAYS)
[COMPILATION COMPLETED]
» RLDR/P TESTPROG BCPLIB.LB 2/K
TESTPROG.SV LOADED BY RLDR REV 05.00 AT <time/date>

TESTP 000445
NODEB 001624
BCPLC 001624
BCPLI 003146
BCPLX 004337
MULT 005254
DIVRE 005273
RSHIF 005334
DRSCH
TRSCH
KILL
ATCBM
NSAC3
DUMMY

NMAX
ZMAX
CSZE

EST
SST

005370
005370
005400
005400
006025
006025

006034
000336
000000
000000
000000

» TESTPROG

P-l P54 P3 P80 P34 P-4 P-3 PI0 P20
L

-4 -3 -1 3 10
SO 100

SUM OF NUMBERS FROM 0 TO 100 IS 201
H
BAD CH 'H'
Q
END OF TEST
»

20 34 54

----------- Finnins BCPL S~stem Reference Manual ----------

80

4 1.

4 Hew to use BCPL on the Nova
--

4.1. SilTlPle IJse

The "front-end" program BCPl.SV is normally used to compile
BCPl source programs on the Nova. This program in turn calls
the compiler, code generator, and macro assembler to produce
corresponding relocatable binary files which may then be
loaded by the standard system loader (RlDR.SV). In the
simF-'lest case,

BCPl PF~OG

would be sufficient to compile the source program PROG.BC
(note that the ",BC· extension is always reGuired) into the
relocatable binary file PROG.RB. Intermediate files PROG.OC
and PROG.SR are created and subseGuentlY deleted (unless
global option D/I" is specified) when no lonser reGIJired.
BCPL.SV references the files BCOMP.SV, BCOMP.Ol, BXREF.SV,
BCGN2.SU, MAC.SU, MACXR.SU, and MAC.PS.Entries for these
files must therefore exist in the current directorY, a
situation which is most easily achieved by use of the command
uLINKBCPl" (see section 4.13).

4.11 Global options

A
II
C
F
I
L*
M*
N
o
P
f~
C' ...)

v
X

assembly code listing (only if local "/l" present)
brief listing only (do not list BCPL source)
insert call counting (implies "/N")
generate fast code (default = compact code)
retain intermediate files (-.OC, -.SR)
generate literal OCODE
MAPS TORE after compilation
insert routine names
compile as overlay (if D/S"), or to use overlays
insert profile counting (implies "/Cu and n/N")
produce cross-reference list on listing file
compile as section (i.e., not as main program)
generate stack overflow test code
syntax check only (no OCODE produced)

Options marked with a*a are primarily of use for compiler
maintenance.

4.12 Local options

G set maximum global number to specified value
(defslJlt :: 255)

L listing file (default = CONSOLE with D/B" assumed)
S set initial stack size to specified number of words

(default = all of memory except for 1024 words
of free vector space) ·0/5· specifies 2048

---------- Finnins BCPL System Reference Manual ----------

4 - 2

words of stack space
U use specified (sin~le) letter to ~enerate uniQue

section labels (default ~ "A")
Z set maximum pase zero slobal number to specified

value (default = 155)

An argument without a local option switch is assumed to be
the BCPL source filename. The extension B.BC" is used
resardless of an~extension specified.

4.13 LINKBCPL

The file LINKBCPL.MC contains a seQuence of CLI commands to
link all the files necessar~ for a BCPL compilation into the
current director~. Assumins that the master director~

contains the necessar~ entries, execution of the following
command:

<master-director~>:LINKBCPL

will leave the current director~ with sufficient facilities
to use all of the BCPL system.

4.2 Stases of compilation

There are five distinct phases in a BCPL compilation.
are? in order:

BCPL source to DC ODE

These

a)
b)
c)

compilation
cross-reference
code sene ration
assembls
loadins

(optional) listins of name references
OCODE to assembler source .) a,

e)
assembler source to relocatable binar~
relocatable binar~ to "save" file

Each phase mas be performed separatels,
remainins portions of section 4.

as described in the

A tspical se8uence of commands to compile a proSram held in
the file FOO.BC might be:

BCOMP FOO SLPT/L
BXREF FOO
BCGN2/F/P/V FOO SLPT/L
MAC FOO
RLDR/P FOO BCDEB BCPLIB.LB 2/K

This would result in FOO.SV ("save" file format). Note that
the first four lines of this seQuence (i.e., eversthing
except the load command) would normally be replaced by a
single simple command to BCPL.SV.

--------.-- Finning BCPL System Reference Manual -----------

4 - 3

4.3 Compilation

The BCPl compiler is held in the file BCOMP.SV, with overla~s
in the file BCOMP.Ol (this name may not be changed). The
compiler overlays itself in two internal phases: the first
reads the source text into memory and builds a syntax tree
containing a description of the program with a set of
accompanying definitio~s; the second translates this tree
into the machine-independent intermediate code OCODE. The
same compiler can be used to produce OCODE for other
computers if their code generators are available. The
compiler reads BCPl source from the file <source>.BC and
writes OCODE to the file <source>.OC. Error messages and
informative comments are sent to the listing file (see local
option ala).

4.31 Global options

A* list AE tree
B brief listing onlw (do not list BCPL source)
D* set PPDEBUG
E inhibit page eject at start of listing
G no GET directives are obeyed
l* generate literal OCODE
M* MAPS TORE after compilation
T* set PPTRACE

Options marked with a*a are primarily of use for compiler
maintenance.

4.32 Local options

A append output to specified file
L listing file (default = CONSOLE with a/B" assumed)
o write eCODE output to specified file

An arSument without a local option switch is assumed to be
the PCPl source filename. The extensions ",BC· for input and
".OC· for output are used regardless of an~ extensions
specified.

4.4 Cross-reference listing generation

An optional step in program production is the generation of a
cross-reference listing of the source program. This is
performed by a utility program held in the file BXREF.SV,
which produces an alphabetical listing of all names used and
the line number of each occurrence. Note that no distinction
is made between occurrences of the same name appearing in
different scopes.

--.-------- Finning BCPL System Reference Manual ----------

-4 _ .. 4

4.41 Local options

C restrict output line length to specified number of
characters (default = 120)

L listing file (default = "SLPT")

4.5 Code generation

The standard (NOVA 2) code generator for the Nova famil~ of
computers is held in the file BCGN2.SV. This name ma~ be
changed if desired, except for use with BCPL.SV. The code
generator reads OCODE from the file <source>.OC and produces
an assembl~ language source file in <source>.SR as output.
This file is complete in all respects, and ma~ be edited b~
the user if desired. Error messages and informative comments
are sent to the listing file (see local option "L").

4.51 Global options

C insert call counting (implies "/N")
D inhibit definitions at start of code
~ inhibit ".END" at end of code
F generate fast code (default = compact code)
L* accept literal OCODE
M* MAPS TORE after code Seneration
N insert routine names
o compile as overla~ (if "/S·), or to use overla~s
P insert profile counting (implies "/C· and "/N")
S compile as section (i.e., not as main program)
V generate stack overflow test code
X* produce code Sene ration statistics

Options marked with "*" are primaril~ of use for code
Senerator maintenance.

I...Dcal

I
I ...

M
o

or··tion-s.

append output to specified file
set maximum Slobal number to specified value

(de f a fJ 1 t :::: 25::=;)
listing file (default = CONSOLE)
write macro assembler source to specified file
use specified name as overla~ file title (".01...·

extension forced; default = same name as
assembler source)

S set initial stack size to specified number of words

"T.

u

(default = all of memor~ except for 1024 words
of free vector space)
words of stack space

"O/S" specifies 2048

use specified name as program title (.TITL)
(default = same name as assembler source)

use specified (sinsle) letter to generate uniaue

Finning BCPL Ssstem Reference Manual ----------

4 -- 5

section labels (default = "A")
Z set maximum page zero slobal number to specified

value (default = 155)

An argument without
the OCODE filename.

a local option switch is assumed
The extensions 8.0C· for input and

to be
".SR"

for output are used reSardless of anw extensions specified.

4.53 Code Seneration error messaSes

Apart from errors detected while decoding the command line,
code generator error messages are relativelw rare. Possible
user errors include:

a) code Sene rating a file that does not contain OCODE

b) program too larSe or too complex (i.e., tables full)

Other than in these circumstances, messaSes usuallw indicate
malformed OCODE (possiblw due to an error in the compiler) or
a bug in the code senerator itself. Full details, includins
listinss of source, OCODE, and ~ode produced should be
reported.

Assemblw is normallw performed b~ the ~tandard Nova-famil~
macro assembler (MAC.SV). As such, all the usual options are
available as described for this proSram. A twpical command,
therefore, might be:

MAC FOO SLPT/L

As the file FOO.SR will normallw contain a .END directive,
user-produced assemblw code modules cannot be inserted
followins the proSram unless code generator local option E is
used.

4.61 Asternblw error messases

Apart from errors detected while decodinS the command line,
assemblw errormessaSes are rare. An exception is a messaSe
indicatins that the swmbol "GN<number)" was not defined.
This will occur if the values specified bw code generator
local options G and Z were not sufficientl~ larse, and the
code generation should be repeated with increased values.
Errors can also result from misuse of code generator slobal
options D and E. Other errors usuallw indicate code
Senerator buss, which should be reported with full evidence.

---------- Finning BCPL Swstem Reference Manu~l

4 6

4.7 Loadins to a save file

Relocatable binarw modules produced b~ the assemblw phase can
be loaded into executable save files bwthe standard
relocatable loader RLDR. The run-time swstem is linked in at
this time, a~d some care is necessarw to ensure that modules
are loaded in the correct order. In general, the load
command line format will be as follows:

RLDR n/K <all BCPL modules> BCPLIB.LB <all non-BCPL modules>

All BCPL modules (includins anw assembl~ lansuaSe routines
written to the specifications of section 6.6) must.be.srouped
tosether, and must precede the reference to the standard BCPL
librarw (BCPLIB.LB) in order to properlw initialize slobals~
The first module in this Sroup must be the main proSram
(i.e., compiled without the slobal S switch) to provide a
startins address' for the save file.

The number of tasks specified in the load command tn/K)
depends on user reauirements, but must be at least tw6 or
Sreater. The followinS load line:

RLDR/P 2/K roo SEC1 SEC2 BCPLIS.LB SLPT/L

will create a save file FOO.SU consistins
modules FOO.RB, SEC1.RS, and SEC2.RS,
components of the run-time librarw.

of the three BCPL
plus all reauired

In Sen_ral, ioadin~ and linkinS is ·Soverned bw the
declaration (NEEDS) and suppl~ (SECTION) of external
swmbols. An additional techniaue is available, however,tc
force loadins of the debuSsinS procedure module ("BePlD").
This ma~ be brousht in bw includins the name sBCDEB a amons
the ~roup of BCPL modules, which maw occasionallw be more.
desireable than the usual method of compilinS a NEEDS uBCPLD B

diT'ective.

4.71 Load error messaSes

Most errors are ·t.h€·) resul t of undefined e:·~ternal names. . If
these are swstem names it implies that the librar~ was not
properlw scanned Ci.e., BCPLIB.lB was omitted from or
improperlw placed in the RLDR command). Alternativelw, this
can be caused b~ the failure of the user to provide matchins
SECTION directives for all NEEDS directives. Finall~, if the
errors concern slobal swmbols (i.e., GNnnn), then either two
or more (or zero!) of the specified modules have been
compiled as main proSrams, or the value specified b~ the code
Senerator local option G was not sufficientlw larse.

4.72 LoadinS with overla~s

Overla~s are loaded in the normal fashion usins RLDR, with

---------- Finnins BCPL S~steffi Reference Manual ----------

4 - j

the followine special considerations:

1) the overlaws must appear in the command line
immediatel~ followin~ the librar~ (BCPLIB.LB)
specification.

2) the librar~ must be specified a second time
immediatel~ followin~ the overla~ list.

RLDR 2/K PROG BCPLIB.LB COVO,OV1A OV1B,OV2J BCPLIB.LB

For more information concernin~ the use of overla~s, see
section 9.1.

-------.--- FinninS BCPL System Reference Manual ----------

~)... :I.

5 Code Generation
.;:: :::: :::: :;:: ::.:'; :::: :::: ::: ::: ::: ::.:: :::: :::: ::: :.:;~

5.:1. T~pes of code Senerator

.::' 1°)

..J + 01.~

The description below refers to the standard (NOVA 2) code
~enerator BCGN2.SV. This is a seauential code ~enerator
producins editable assembl~ code as output which ma~ be
assembled with the standard Nova assemblers.

Coc-ie for operatoT'!;;

This section details the code that the code Senerator
produces for various operations. This is onl~ intended as a
suide and the code produced for some operations will
undoubtedl~ chanSe between different versions of the code
Senerator. Not all operations are dealt with; onl~ those of
particular interest are discussed.

5.21 Plus and minus

Plus (+> and minus (-) simpl~ involves loadins the two values
into reSisters and then addins or subtractins the values.
The main optimisation on this is the case S:= S+l which
Sene rates the code:

lSZ
JMP .+1

I nc pelT,€~nt rr'€~IT'O r~
No oF-'er'atj,on

and 8 := 8-1 which similarls uses the DSZ instpuction. This
saves between one and two instructions and is worthwhile as
f.) ! "" S + 1. 0 l' S :::: S ---1, i~; COlli 11, or', i nBC F' l.. • I n i:l d d i t ion t h €,~ INC
o r-' (:~ 'f' ,col t i Ol"j

r\~s-j is t€" r.
is used when +1 is needed and the value is in co:

5.22 Multiplication

Multiplication '*) is usualls done b~ entr~ to a subpoutine
whose address is on paSe O. The values ape loaded into
reSisters ACO and AC1; resistep AC3 is then cleaped and a
uJSR @D instruction compiled. The result is returned' in
AC:I.. The actual nature of the subroutine depends on the
hardware available on the machine and this method is usedlo
bvoid chanSins the code seneralor to take account of
d j, fff.': rE'nt ;-',a r'cj\.Jd,"C·,

Note that subroutine calls to this routin€:: cirld t~) tj-',o'::;,\::'
described below in ~ections 5.23 and 5.24 are standard JSR
calls expectins the link in AC3 unlike the standard BCPL
convention for function/routine calls.

... F i ["11"1 i ;-', ::.;.~ r: c r:'!... ~:; ':::: .~; t t:-:. IT! F: e f €.~I r- ~~.! n c' E' r't a n f.J a 1 -.- N_' ,

1=:' r"
... J

5.23 Division and remainder

Division (I) and remainder (REM or %) are Sene rated in the
same waw as multiplw above. The dividend is loaded into AC1
and the divisor into ACO; re~ister AC3 is cleared and a "JSR
@D instruction generated via a location on paSe O. The same
routine is used for divide or remainder and the two results
are returned in re~isters ACO (the remainder) and ACl (the
Quotient). The division is a sisned FORTRAN twpe division;
i.e., the remainder and the Quotient alwa~s have the same
si~n and division is b~ truncation towards zero. However,
users who reQuire machine independence should avoid
assumptions of this nature as this is not defined in the
lan~ua~e. Nevertheless, for this implementation the eGuation

A REM B + B*(A/B) = A

holds for all values of A and B.

5.24 Shifts

The losical left and risht shifts in BCPL are sene rated in a
similar fashion to the multiplication above. The pattern to
be shifted is loaded into resister ACO and the amount of the
shift into resister AC1; reSister AC3 is freed and a "JSR @"

instruction seherated to one of two addresses on pa~e 0
(dependins on the direction of the shift). The exact
definition of the operation in terms of the amount of the
shift is:

amount (= 0 -?
1 (= amount (= 15 -)
16 (= amount -)

no effect
as e:·:pected
T'esult is 0

Constant shift amounts of 0, 1, 2, 8, and 15 result in the
Seneration of one or two in-line instructions which are more
efficient than the ~eneralized subroutine call.

5.25 LoSical operations

BCPL provides four diadic losical operations: & CLOGAND), \
(LOGaR), NEQV, and [QU. These all involve loadins an~ two
reSisters with the values involved and then Seneratins a code
seGu~nce involvinS these two reSisters. The code for the &
operation is trivial; for the other operations the code is as
follows (assumins the values are in reSisters A and B):

\ (LOGOF~ ;;
COM I~ ,

.~ A . _ .. ~A
~'I .-

AND A y, £1:= B&~A ,··t) j:',

ADD "~l , B F:esIJI t is in B

reisins on the eouation A\B - A&~B + B

............... _ -..... Fir.rlirl~':'; BCPL ~;~~5t~!1TI i:~€,f€~r(~rlc"!! j"lanIJal

~5 3

The code for EQV and NEQV involves three
third resister must be cleared. If this
bs I then:

NE(~')

MOV A, I I +- (.1 ,-
ANDZL B, I I ,- 2*(AU:) . _.
ADD El, A
SUB I, A F~e,::;u 1 t is in

resisters and the
resister is denoted

A

relyinS on the eGuation A NEQV B = A + B - 2*(A&B)

EQV is the same seauence followed b~ a COM A, A instruction,

5.3 Characters and strinSs

The character code for the BCPL implementation on the Nova is
7 bit ASCII (American Standard Code for Information
InterchanSe). A complete listins of relevant codes and
associated sraphics is siven in appendix B.

This section describes the representation of characters and
strings.

5.31 Characters and escapes

The representation of characters is as in standard BCPL and
the value of a character denotation is as siven in appendix B
(i • E)., 'A" "" 65 ::: :JI: 1 0 1.) • Howeve f" '::;OITIE' Ch2: I'acte r":; cannot be
directls represented in BCPL and these can be escaped into
character denotations and strings. The standard escape
character is * which in BCPL is represented as '**' for a
sinSle * character.

Other denotations that can be represented in escapes are:

,. *0"
.' *G'
" *B'
'*T'
,. ;·H .. '
, *V "
" *p.'
'*F'
'*c .'
/':I{8.1 .' * . ,
.' *' ,.
'**'

The denotation '*N'
this implementation.
programs should not

null (zero)
bell
backsF"ace
t.ab
line f·eE.'d
v0.'rtical tab
forlTl feed
f 0 l'lTl f eE:d
C·3 T' 'j' i ase r€~tu rn
·:;;·pac€·~

s i f'i ~.:; 1 () "
sinSle
sinsl€~ *

i,:::. t.he standard
Cur·T'f:)ntJ.':! this

a's S Uril!':! '''l n ':it hi nS

o
"'1
I

8 (:fI:10)
')(:JI:11)

:lO(:JI:1~O
11(:11:13)
12(:fI=l4)
12(:JI:14)
13(:fI:1~'j)

32(f.40)
34 (:fI:4:U
39 (:JI:4 7)

42 (:fl:52)

notation for newline in
is identical to '*L' but
about the value of '*N'

---------- FinninS BCPL Ssstem Reference Manual ----------

NoTE.. '.

as this mas chanse in future iffiplementations.

Note that * followed bs ans other character (includinA lower
case letters) is trealed as that character itself. If a
string is too IonS to fit on one line of text it can be split
textualls bs inserting the seauence "*<carriase control><tabs
or spaces>*" answhere in the strinS; this is cOffipletels
isnored (tabs or spaces are optional). Otherwise carriase
control characters in a string produce a fault.

5.32 String representation

The standard BCPL strinS representation is used (see section
2.2). Characters are packed two to a word with the most
significant character of ans pair in the leftmost bste. The
first bste of an~ string contains the count of the number of
characters in the string from 0 to 255v so the maximum length
of a string is 255 characters. Empts strinss (lensth 0) are
allowed. The bste index starts from 0 (as do vector indices)
so that the count i~ held in bste 0, the first character is
in bste 1? the second character in bste 2, and so on.

The onls departure from standard BCPL is the additional
feature that strinss are packed with at least one zero bste
at the end. This bste is not included in the count and for
all standard BCPL purposes is completels iSnored. Its
purpose is to allow for the manipulation of text elements
that are delimited bs a null bste (such as operatins ssstem
f i 1 E'n~lrrles) •

The strinS "DATES· will therefore be represented bs a pointer
to a storage vector packed as follows:

o

:L

7
~.'

: -.. _ -.- _. :
c:'
~)

,. A ,.

o

l II I

o
: -- -..... - _ .. _ -- _.. :

where the 7th bste is set to zero (null) bs default. Note
that user routines which create or cops strings should
preserve this convention if the null terminator facilits is
d if":' ,~~ i r I~'~ '7:i ~

~.:). 4 I !""lei i f"E.'ct i. Dn ~li"ld add l'e-o'·5 OPE' r'ato 1'5

~) • -4 ;I. I r'1 ci irE' c t i. 0 r I

................... "" F :i. r·II""1 i II ~:; .C C F' L. ;;i :i ~;:. t ,Z,' III ::;~ E' f E~ r f:.' n c €~ J--i a n 1.1 a 1•.........

I!!' ~.
,_I '

The! operator in BCPL allows the proS rammer to use a value
as an address (cf @ in assembl~ code), The code currentl~
generated for this operator is not optimal because of some
restrictions and difficulties in implementation (which,
hopefull~, will be eliminated in future versions).

Thus indirection is usuall~ achieved b~ ihdexins the value in
resister AC3. This makes comparisons such as !I=!J Guite
inefficient.

5.42 Addresses

The @ operator in BCPL allows the proSrammer to use the
absolute address of a ~ariable as a parameter. For Slobal or
static variables this address is a load-time constant.
However, stack addresses must be calculated at run-time b~
addinS the constant to the stack pointer in AC2 •

........ , -- .. --...... Finn :i. nS BCF'L S~s telll F.:efe renee t1anl_la 1 -_ _ .. _- .. _ .. _-_ -..

6 :I.

6 The Machine Code Interface
==========================

••• this chapter is not wet available •

..................... -.............. Finnins :BCF'L. S'~stefTI F,eference Manual -...... -----.. -- ... --.... .

7 _00 1

7 The Sta~dard Finning Librars

This chafter descT'ibes the standard 1 ibrar~cro'.Jtines:'pT'ovider.j:, ,
.wi th the TinninS' BCPLs.~stelll"Man':lof,·these rOI..l'tines:· have,'
identical cOI.Jnterpartsin'· llIost , BCPL. 's~stellls (see sectlon:"
2.8), blJta number are l.JnialJe to the Finnirig iIT'Plemer:,tatibn'.:

Declarations for the. standard librar~ .re
in the file LrBHD~.BC (although this ~a~
user if desired). ProSrallls that wish
should contain .thedirective

norlTlall~con~ii~ed
be chanSed·b~:~he,
to ~se this he~~.r

GET 8LIBHDF<"

at an appropriate place. A listing of this standard header
can be found in Appendix C.

The,nallles referented in this chapter are the
fun~tion/routine nallles. Thesellla~ be changed
desired, provided that the Slobal declarations
same nUlllber as the standard nallles (as shown
listing) •

standard BCPL
b~ the l.Jser ·if

reference the
in the L I I~HDF\

In the detailed descriptions
preceding a nallle is indicative
rOI.Jtine.

which follow, an 8:" sign
of a function, rather than a

7.1 Librar~ Jinkage

The BCPLlibrar~ is kept in the standard format librar~ file
BCPLIB.LB. It consists of a number of necessar~ and optional
modwles which are loaded b~ the RLDR operation. The order of
the modules in the librars is significant, and users wishing
to add new modules should place them at the beginning.

Loading of the modules is dinected b~ "external" names,
produced b~ the code generator both autolllaticall~ and in
response to NEEDS directives. Call-b~-nallle is not possible
due to the organization of the BCPL Slobal vector, but the
available routines are collected into easil~ specified
9roups~ each loaded with a sinSle NEEDS directive.

7.2 Basic routines

The rou\ines and functions listed in this section are
considerrid fundamental to the BCPL run-time environment, and
are loaded automaticalls from .the librars, without the
necessits of a NEEDS directive.

---------- Finnins BCPL S~stem Refe~ence Manual

7 - 2

STARTC) is not defined bw the librar~ and must be sUPplied bw
the user. It is (bw tradition) global vector entrw 1, and
this is the routine which is entered (bw a standard routine
call) after run-time initialization is complete. The global
number of START cannot be re-defined bw the user. Returning
from this routine has the same effect as executing a FINISH
command.

7.22 STOP

STOP(CODE) i.a routine which never returns. It takes a
completion code as its single argument; if this is zero, then
the program termina.tes normallw (if operating '_Indel' r~DOS, a
.RTN is performed). Non--zero completion codes are treated as
error messages (.ERTN under RDOS), and ma~ be of two twpes:
negative val'Jes are complemented and F'assed as operating
swstem errors; positive values are incremented bw #10000 and
passed as BCPL run-time errors (see Appendix D). An example
of the use of STOP in an error situation is:

INFILE := FINDINPUT("DATAFILE e)

IF INFILE < 0 THENSTOP(INFILE)

7.23 GETBYTE and PUTBYTE

=GETBYTE(VECTOR,INDEX) j.s a function which wields
particul~r bwte within a vector. Its first argument is a
vector or string address; its second a bwte number for that
vector or string. The result is the (S-bit) bwte specified,
which will alwaws be in the range 0-255.

On the Nova (as in most
numbered from left to
packins:

BCPL implementations), bwtes are
right to correspond with string

: _ _ : _--.. -
o o 1

: ___ oo : ___

1 2 3
: __ _.-.: ____ MOO

2 4 5
: _-_ : _ .. _-- :

3

If the first argument is a BCPL string, then GETBYTE(V1N)
will wield the Nth character of same:

GETBYTE("STRING",2)

will produce the value 'T'.
~i~ld the size of the strine
str'j,n!:.n:

Also in this ~ituation, N=O will
(num6er of character~ in the

... -- ---.......... ---... -. Finn i n!'.i :8CPL Sws tem F.:efe T'ence Manual .. --.. -.. -.. ---- --

7 - 3

will produce the value 6. Note that this is also the highest
byte number of the string (but not including the ·invisible"
null terminator discussed in section 5.32). This special
case of accessing the first byte (length) of a string is more
naturally accomplished using the field selector LENGTH,
defined in the standard library header. Thus, an expression
e~uivalent to the above would be

LENGTH OF ·STRING"

PUTBYTE(VECTOR,INDEX,BYTE) is a routine which stores a
specified byte into a vector or string. The first two
arguments are as described for GETBYTE above; the third
specifies a byte value (the rightmost 8 bits of the value are
used). This routine will update the indicated byte to the
new value.

LET STRING = ·STRING"
PUTBYTE(STRING,2,'P')

will change the string addressed by STRING from "STRING" to
·SPRING".

7.24 PACKSTRING and UNPACKSTRING

These routines are concerned with the conversion of strinSs
between packed and unpacked formats~ The normal packed
format of a BCPL string is as defined in section 5.32.
Unpacked strings are structured with one byte per word. As
in the packed format, the first element (in this case, the
first word) is used to contain the string length Ci.e.,
number of characters). The null byte delimiter convention is
not used in the unpacked format, so a vector of 256 locations
(VEC 255) is sufficient to hold the lareest unpacked BCPL
strine. In packed format, 129 locations (VEC 128) are
necessary for the larsest string.

=PACKSTRING(VECTOR,STRING) is a
string from one vector to another,

function which copies a
converting from unpacked

to packed format in the process. Its result is the subscript
of the highest element of the destination vector used (N/2 on
the Nova, where N is the number of characters in the
string).

UNPACKSTRING(STRING,VECTOR) is a routine which copies a
strine from one vector to another, converting from packed to
unpacked format in the process.

7.25 LEVEL, LONGJUMP, and APTOVEC

=LEVELC) returns as its result a pointer to the stack frame
of the callins routine (note that this is the senuine value

---------- FinninS BCPL System Reference Manual ----------

/' ... 4

of the pointer rather than the contents of AC2, which are
offset b~ 128). The value ma~ be used for LONGJUMP or for
debus~inS purposes such as BACKTRACE.

LONGJUMP(POINTER,ADDRESS) specifies a value for the stack
frame pointer (t~picall~ as returned b~ LEVEL), and an
address (t~picall~ a label) to which control is transferred.
Th~ value of the frame pointer must be currentl~ active or
the stack will be cor~upted when the entered routine attempts
to return. If the activation level is not applicable to the
routine, the results are undefined~ proSrams should normall~
ensure that the value used for the frame pointer was obtained
in the same routine in which the address label was defined.
An illustrative example:

GLOBAL $(L:100 ; LABEL:101 $)

LET START() BE $(
,L :::: LEVEL ()
LABEL: + •••

$)

•

LONGJUMP(L,LABEL)

It is also possible to Specifw a routine or function address
as the second arSument (LONGJUMP simulates a routine call to
the address with a stack frame size of zero), so the call

LONGJUMP(SYSTEM(STACKBASE),START)

miaht be a useful thinS to do. The calling routine must not
return, however~ as there is no lon~er an~ place for it to
return to!

=APTOVEC(FUNCTION,SIZE) allows the programmer to declare a
stack vector whose size is specified at run time. This is
normall~ not allowed in BCPL, as the size of an~ vector
specified b~ VEC must be known at compile time. A definition
of APTOVEC in <somewhat illegal) BePL terms is:

LET APTOVEC(F,N) ::: VAL OF $(
LET V ::: VEC N II define specified vector
RESULTIS F(V,N) II appl~ function to vector

The second argument must be a positive inteser which is not
larser than the space left on the stack (this ma~ be checked
b~ use of the LEVELC) and SYSTEM(STACKTOP) functions). The
operation is performed b~ constructing both the reauested
vector and an appropriate callinS seGuence for the referenced
function (or routine) on the stack. Anw result returned b~
the function will appear as the result of APTOVEC. Note that
stack overflow is checked regardless of the code senerator

----------Finning BePL S~stem Reference Manual ----------

Slobal ·V· option.

7.26 GETVEC and PUTVEC

These routines provide a simple seneral-purpose memor~

manasement s~stem, usinS a first-rit method with boundar~
taSs, to coalesce blocks beins freed with other blocks
alreadw free. The internal variable SLOP (which is
initialized to 3, its minimum allowable value) is a number
such that if N words are reGuested, and if the first free
block of size N or greater is no larger than NtSLOP, then the
whole block will be allocated instead of being split uP.
LarSer values of SLOP (which ma~ be set' using the SYSTEM
function) tend to reduce fragmentation at the expense of
unused space in the allocated blocks.

=GETVEC(N) creates a d~namic vector b~ removins Ntl cells of
contiguous storaSe from the memorw management s~stem. The
address of the Ntl cells is returned as the value of the
function. The storage allocated is released b~ PUTVEC, in
contrast to the VEC allocation described in section 2.65,
which is released when the execution block is left.

PUTVEC(VECTOR) is a routine which takes as its argument a
pointer to a vector previousl~ allocated b~ GETVEC; this
space is made available for further allocation. Needless to
sa~, Srave disorder will result if the space assisned b~

GETVEC is overrun or if some random number is handed to
PUTVEC.

7.27 SYSTEM

=SYSTEM(SPECIFIER, •••) allows access to internal variables
maintained b~ the BCPL run-time swstem. This capabilit~ is
twpicall~ used to determine available space, modif~ standard
parameters (such as the SLOP value used b~ GETVEC), or for
some special-purpose debuSginS functions. The first arSument
specifies the operation to be performed, chosen from the
fa 11 ow i nSI is t (the nalTlE,?S of which a J'e defined in the
standard librar~ header):

GLOBALZBASE returns the bas~) address of the • ZF\EL
slobals.

GLOBALNBASE returns the base address of the • NF\EL
Slobals.

GLOBALBF\EAK returns the break point of the slobal
\,Jector (i.e., the last slobal nUl1lbe r on f>age zeT'O).

GL.OBALTOP returns the tOf" addr€·ss of the global
·,,1ector.

STACKBASE returns the base address of the current task
stack.

STACK TOP returns the top address of the current task
'5tack.

STACKSPACE returns the space (in words) remaining on

---------- Finning BCPL S~stem Reference Manual ----------

7 - 6

the current task stack.
VECToRSPACE returns the size of the next vector

immediatelw available from GETVEC (note that this is
only sisnificant prior to the execution of anw
PUTVEC operations, which maw frasment the available
space).

PROGBASE returns the base address of the proSram .NREL
space.

PRoGToP returns the top address of the prosram .NREL
space (not includins space used b~ stacks or the
memor~ manaSement s~stem).

ADDRESSoFGLoBAL,N returns the address of slobal number
N.

ADDRESSoF,ADDR,AC2,AC3 returns the address referenced
b~ a memor~ reference instruction (MRI). The second
arSument is taken as the address of the MRI. If
this MRI uses address modes 2 or 3 it is necessarw
to know the values of resisters AC2 and AC3 when the
instruction is executed. Arsuments three and four
are used for these values respectivelw. If these
values are Sreater than zero the~are taken as
Siven; if nesative, the routine will return -1
except that, for the contents of AC3, a search is
made to see if the resister was loaded in the
previous 4 instructions, in which case the loaded
value is used. Not that the contents of AC2
represent the LEVEL when the instruction was
executed; this is the value that should be passed
(not the actual contents of AC2), as the routine
corrects for the -128 discrepanc~.

GROUND returns 0 or 1 if the prOSram is executins in
the (RDOS) backS round or foresround respectivel~.

Zero is returned in a non-RDOS environment.
SETTABWIDTH,N sets the Dutput tab width to N (default

value = 8).
SETSLOP,N sets the SLOP value used b~ GETVEC

(minimum allowable value = default value = 3).

7.28 Special-purpose basic routines

OVERLAY is described in section 9.1.
SYS is described in section 9.2.
ABORT and PMSET are described in section 8.3.

to N

XIo, ITASK, IENABLE, and IEXIT are described in section 9.5.

7.3 Character (stream) liD routines

The routines in this and the followin. section are considered
to be "standard" BCPL liD operations, and as such provide
compatibilit~ with other BCPl implementations. These
routines are loaded from the librar~ with a NEEDS "SCPlC·
directive.

---------- Finnins BCPl S~stem Reference Manual ----------

7 - 7

In BCPLf ·current input" and ·current output" liD channels
are assumed to be referenced b~ the read and write operations
respectivel~. These operations treat the channels as a
continuous stream of characters (b~tes).

7.31 FINDINPUT and FINDOUTPUT

These functions are used to open specified files for use as
·standard D BCPL liD channels. The file descriptors which
the~ return ma~ be used as arsuments to the SELECTINPUT and
SELECTOUTPUT routines.

=FINDINPUT(NAME) opens the specified fi·le for input in th~
·fast" read mode (see section 7.51), and returns a pointer to
a newl~ created file descriptor (or an err6r ~- see section
7.5) as its result. NAME must be a string containing a lesal
s~stem file name. This function is eauivalent to
OPENCNAME,rO.FREAD).

=FINDOUTPUT(NAME) is similar to FINDINPUT, except that the
referenced file is opened in the ·fast" write mode. This
function is eauivalent to OPEN(NAME,IO.FWRITE)~

7.32 SELECT INPUT and SELECTOUTPUT

These routines are used to establish the ·current· 110
channels for use b~ the read and write operations. These
channels default to the console at initialization time and
thenceforth are updated b~ the user as desired.

In each of these routines, the single argument is either a
fil~descriptor pointer (such as returned b~ FINDINPUT, etc.)
or either of the special descriptors CONSOLE or DUMMY? which
are defined in LIBHDR.

SELECTINPUTCFILDES) specifies the current input channel,
which is used for all subseauent standard BCPL read
operations until the channel is chansed b~a SELECTINPUT,
ENDREAD, or ENDTOINPUT command. Input from the DUMMY file
returns ENDSTREAMCH (defined in LIBHDR).

SELECTOUTPUTCFILDES) specifies the current output channel,
which is used for all subseauent standard BCPL write
operations until the channel is changed b~ a SELECTOUTPUT,
ENDWRITE, or ENDTOINPUT command. Output to the DUMMY file is
iSnored.

7.33 CH, INCHAN, and OUT CHAN

These are Slobal variables which are used b~ the BCPL
character (stream) 1/0 routines. The~ ma~ be referenced b~
the user, but should not be modified b~ same (except
indirectl~, through the use of routines such as RDCH,
SELECTINPUT, etc.).

---------- Finnins BCPL S~stem Reference Manual ----------

7 - 8

CH is a slobal variable containing the character most
recentl~ input b~ the RDCH function. It should be noted that
READN and READ NUMBER (see section 7.46) also modif~ CH, as
the~ emplo~ RDCH in their operations. CH is maintained for
each separate 1/0 channel, and is properl~ preserved b~
SELECTINPUT.

INCHAN is a global variable containing the file descriptor of
the ·current" input channel. This is maintained primaril~

for compatibilit~ with other BCPL implementations; its value
should onl~ be accessed using INPUT.

OUTCHAN is a global variable containing the file descriptor
of the ·current" output channel. Like INCHAN, this should
normall~ not be accessed directl~, but rather using OUTPUT.

7.34 INPUT and OUTPUT

These functions take no argumentsp and are used to access the
current file descriptors for the input and output channels,
thereb~ allowing them to be saved and (possibl~) restored at
a later time.

=INPUT() returns the latest file descriptor passed b~
SELECTINPUT.

=OUTPUT() returns the latest file descriptor passed b~
SELECTOUTPUT.

7.35 REWIND

=REWIND() is a function taking no arSuments which attempts to
(re)position the ·current" input channel to the start of the
file. It returns an~ error encountered (see section 7.5).

7.36 ENDREAD, ENDWRITE, and ENDTOINPUT

These functions operate on the currentl~ selected input and
output channels as necessar~ and return an~ errors
encountered (see section 7.5). Output channels are flushed
(see section 7.54) prior to closing.

=ENDREAD() will close the current input channel and ·unset"
its selection.

=ENDWRITEC) will close the current output channel and "unset"
its selection.

=ENDTOINPUTC) will close the current output channel and
·unset" its selection. It then reopens the file and selects
same as the current input channel.

---------- Finning BCPL S~stem Reference Manual ----------

7 -. -9

7.37 RDCH and WRCH

These are the basic sinsle-character read
operations of BCPL. The~ operate on the currentl~
liD channels.

and write
selected

=RDCH() reads one character from the ·current" input
channel. The character is masked with t177 to remove the
parit~ bit and the result copied into CH (~ee section 7.33)
as well as returned
is converted to the
(ASCII value t32) is
feeds are iSnored.
avoided if necessar~

in the normal fashion. CarriaSe return
BCPL newline character ('*N'); CTRL/Z
converted to ENDSTREAMCH; hulls and line

These special interpretations ma~ be
b~ usinS GETB (see section 7.53).

WRCH(CHAR) writes its sinSle character arSument to the
-current" output channel. Newline is con~erted to carriase
return followed b~ line feed; horizontal tabs are simulated
usins th~ ·space- character.
maw be avoided if necessarw
7.53).

These special interpretations
b~ usins PUTB (see sectiori

7.38 UNfWCH

UNRDCH() is a routine to "backspace- one character on the
currently selected input channel. Its effect is such that
the next call to RDCH will return the character currentl~ in
CH. The value of CH followins the UNRDCH operation, as well
as the effect of multiple UNRDCH's is not defined in standard
BCPL (in the Finnins implementation, CH is unchansed, and
each UNRDCH will ·put back" one more cop~ of same). For a
more flexible ·un-read- mechanism, see PUTBACK (section
7.54),

7.39 NEWLINE and NEWPAGE

These routines are used for convenience in writins common
-termination· characters to the currently selected output
channel. The~ have the additional effect of flushinS the
channel buffer (see section 7.54).

NEWLINE() writes the newline character
"current" output channel.

NEWPAGE() writes the newpaSe character
·current" output channel.

7.4 Formatted (stream) liD routines

(, *N') to the

(, *P') to·· the

As in section 7.3, these routines are considered to be
·standard" BCPL 1/0 operations, and operate on the currentl~
selected ilo channels. The~ are loaded from the library with

-----_.---_.---_.-- Finnins BCPL. System Heference Manual ---------------.. ---

7 - 10

a NEEDS "BCPLC· directive.

7.41 WRITED and WRITEN

These routines are used to output a value as a sisned decimal
number.

WRITED(VALUE,WIDTH) will write the decimal value to an output
field of the specified width, filling in leading spaces if
reQuired. Note that the value will alwa~s be printed
correctl~, even if the specified field width is too small (in
this case it will overflow into the minimum necessar~
width). A field width of 6 will alwa~s be large enough to
ensure the correct alisnment of fields on the Nova.

WRITEN(VALUE) is an implementation-independent routine which
writes a sisned decimal number in the minimum necessar~ field
width. It is eQuivalent to WRITED(VALUE,O).

7.42 WRITEOCT and WRITEO

These routines are used to output a value as an unsiSned
octal number.

WRITEOCT(VALUE,WIDTH) will write the octal value to an output
field of the specified width (alwa~s), truncatins or filling
with leadins zeroes as reQuired.

WRITEoeVALUE) is an implementation-independent routine which
will write an octal number in the minimum necessar~ field
width for the machine in use. It is eQuivalent to
WRITEOCT(VALUE,6) on the Nova.

7.43 WRITEHEX and WRITEH

These routines are used to output a value as an unsisned
hexadecimal number.

WRITEHEX(VALUE,WIDTH) will write the hexadecimal value to an
output field of the specified width (alwa~s), truncatins or
fillins with leadins zeroes as reQuired.

WRITEH(VALUE) is an implementation-independent routine which
will write a hexadecimal number in the minimum necessar~
field width for the machine in use. It is eQuivalent to
WRITEHEXeVALUE,4) on the Nova.

7.44 WRITES

WRITES(STRING) takes a standard (packed) format BCPL strins
as 1ts sinsle arsument and copies it one character at a time
to the ·current" output channel (using WRCH).

----------- Finnins BCPL Swstem Reference Manual ----------

7 - 11

7.45 WRITEF

WRITEFCSTRING,VALUE1,VALUE2, •••) take. a standard Cpacked)
format BCPL strins as its first arsument and copies it one
character at a ti~e to the ·current- output channel. Within
this ·format strinS", occurrences of the seQuence X- cause
output of the values contained CseQuentiall~) in the second
and subseQuent arSuments. The followinS output formats are
recoSnized, output beins performed b~ the indicated routines:

XN numeric value WRITEN
XIw numeric value WRITED
XOw numeric value WRITEOCT
XHw numeric value WRITEHEX
ras strins value WRITES
XC chafacter value WRCH

·w" in this list refers to a field width specification, which
is any lesal hexadecimal disit. A maximum of twelve
arSuments is provided for (the format strins plus eleven
inserted values). Some examples of the use of WRITEF:

WRITEFC"XN t XN = XN 1 ,12,34,12f34)
writes ·12 t 34 = 46"

WRITEFC"X02 OCTAL =XI2 DECIMAL.D,9,9)
writes 811 OCTAL = 9 DECIMAL."

writes
WRITEFC"XC,XC,XS·,65,'B','C,D")

'A,B,C,D 8

Note that XIw calls WRITED and can overflow its field in the
same wa~ Csee section 7.41).

7.46 READNUMBER and READN

These functions are used to read numeric values from the
currently selected input channel.

=READNUMBERCRADIX) returns the value of a sisned numeric
character stream from the ·current· input channel, usinS the
specified radix C2-16) for conversion. Leadins space, tab,
newline, and newpaSe characters are iSnored; If I and 8-"
cau~e th. appropriate action, and disits are read until a
non-disit character is encountered. If no disits are
present, the result is zero; overflow is not detected.

=READN() returns the value o~ a sisned
stream from the "current" input channel.
READNUMBER(10).

decimal character
It is eGuivalent to

Both of the above functions leave the terminating character
in CH Cas a result of the calls to RDCH). In many versions
of BCPL this terminator is left in a slobal variable called

---------- Finnins BCPL S~stem Reference Manual ----------

7 - 12

TERMINATOR. To achieve . compatibilit~ with this t~pe of
implementation, it is merel~ necessar~ to declare a slobal as
follows:

GLOBAL $(TERMINATOR : 70 $)

where 70 is the Slobal number of CH.

Note also that these functions besin readins their first
input character from the currentl~ selected input channel.
If the first disit of the number has alread~ been read b~ a
proSram (which thus determines that it is a number), it is
necessar~ to "put it back" to the channel (probabl~ usins
UNRDCH) prior to callinS the numeric input function.

7.5 RDOS I/O routines

The routines and functions in this section provide a
comprehensive collection of 1/0 facilities which are
compatible with the RDOS/RTOS/etc. philosoph~. Some minor
modifications to the standard RDOS "rules· have been made in
the interests of BCPL compatibilit~, but the user should
recosnize that these operations are non-standard BCPL, and as
such are not easil~ transportable to other implementations.

Most of these functions return optional error codes; when
provided, these errors are the boolean complement of the RDOS
error num~er, and therefore will test as a nesative value.
If the~ are passed directl~ as an arSument to the STOP
routine, a proper error return will be made to the operatins
s~stem (see section 7.22). Functions which onl~ return error
values return zero when no error condition exists.

It should be noted that inasmuch as these operations inte~act
directl~ with the operatins s~stem, the~ form the basis of
all I/O in this BCPL implementation (i.e., the ·standard·
BCPL. operations are defined in terms of these). If it is
desired to use these routines separatel~, the~ ma~ be called
from the librar~ with a NEEDS -BCPLI 8 directive. In the
descriptions which follow, familiarit~ with the RDOS I/O
environment is assumed, as this will be necessar~ to make use
of these facilities at an~ rate.

7.51 OPEN and CLOSE

These functions are used to ·open
s~stem files in order to allow access
and write commands.

and ·close- operatins
to same with the read

=OPEN(FILtNAME,MODE) is a function takinS two arSuments, a
(standard packed format) BCPL strins namins the file to be
o~ened, and a Bmode D indicator (described. below). The file
is opened as specified, a "file descriptor" vector is claimed

---------- Finnins BCPL S~stem Reference Manual ----------

7 - 13

from free ~torase and initialized, and a pointer to this
vector (or an error code) is returned as the function
result. This pointer will always test as a positive value,
and is therefore easily differentiated from an error
indicator. A file may be opened in one of five "modes", and
this determines which operations may subseQuently be
performed. The codes for these OPEN modes are defined in the
standard library header; they function as follows:

IO.READ opens a file
commands (BYTEREAD,
function is used.

for readin~ usins
LINEREAD, etc.).

RDDS-twpe
The .ROPEN

IO.READWRITE opens a file for readins and/or writins
usinS RDOS-type commands (BLDCKREAD, BYTEWRITE,
etc.), If the file does not exist,· a new one is
automaticallY created usinS .CRAND~ The .OPEN
function is used.

ID.WRITE opens a file for Writing usins RDOS-type
commands (BYTEWRITE, LINEWRITE, etc.)~ If the file
does not exist, a new one is automaticallY created
using .CRAND. The .APPEND function is used.

IO.FREAD and IO.FWRITE are identical to IO.READ and
IO.WRITE respectively, but the files are opened for
110 using sinSle-byte-oriented commands (GET8, PUTe,
PUTBACK, etc.), This is implemented by buildins and
using an internal buffer for these channels so as
not to suffer from the inefficiencies of RDDS
single-byte 110. Files opened in this manner are
referred to as "fast" files in the Finnin~ BCPL
docu~entation.

Note that an attempt to perform I/O to a file whose openins
mode is incompatible with the operation type will result in a
BCPL run-time error (see Appendix D).

~CLOSE(FILDES) will close the file referenced by its file
descriptor argument, returning any error as a result, and
restoring the file descriptor vector to free storaSe. Any
file which has been opened in th~ "fast write" mode will be
automaticallY flushed (see section 7.54).

7.52 DELETE and RENAME

=DELETE(F~LENAME) takes as its single arsument a <standard
packed fo~mat) BCPL string naming a file to be deleted. It
returns any error encountered as the function result.

=RENAME(OCDNAME,NEWNAME) takes two arguments, each a
(standard packed format) BCPL string. The file named by the
first argument is renamed as specified by the second
argument. Any e~ror encountered is returned as the function
result.

---------- Finning BCPL System Reference Manual ----------

7 - 14

7.53 GETD, PUTB, GETC, PUTC, CONSOLEIN, and CONSOLEOUT

These operations all perform sin~le-bwte 1/0 on Bfast" files
(i.e., files which have been so opened; see section 7.51).
Thew do not return error codes to the user, but maw ~enerate
run-time error messaSes.

=GETBCFILDES) returns the next (8-bit)
file indicated bw the (file descriptor
ENDSTREAMCH is returned on end-of-file
DUMMY channel.

bwte read from the
pointer) ar~ument.

or readin~ from the

PUTS(FILDES,BYTE) writes the specified bwte (the ri~htmost
eisht bits of the second ar~ument) to the file indicated bw
the (file descriptor pointer) first arSument. Output to the
DUMMY channel is isnored.

=GETC(FILDES) is identical to GETB except that the returned
value is treated as an ASCII character (see RDCH in section
7.37).

PUTC(FILDES,CHARACTER) is identical to PUTS except that the
SUPplied bwte is treated as an ASCII character (see WRCH in
section 7.37).

=CONSOLEIN() provides for direct input from the console
(usinS .GCHAR) without reQuirins a file OPEN. It "echoes"
the received bwte and returns it as an ASCII character (see
RDCH in section 7.37).

CONSOLEOUT(CHARACTER) provides for direct output to the
console (usins .PCHAR) without reQuirins a file OPEN. It
prints the specified bwte as an ASCII character (see WRCH in
sec~ion 7.37).

7.54 PUTBACK and FLUSH

PUTBACK(FILDES,CHARACTER) maw onlw reference a file which has
been opened in the Bfast read" mode (see section 7.51). Its
function .is to (re)place a character (specified in its second
arsument)" Bin front ofB the current position in the file
indicated bw the (file descriptor pointer) first arSument.
This character is not actuallw written to the file, but
rather retained in a last-in, first-out (LIFO) list, which
must be emptied bw subseQuent read operations before the
actual file data is asain read. DUMMY channel references are
i~nored.

FLUSH(FILDES) may onlw reference a file which has been opened
in the ·fast write" mode (see section 7.51). Its function is
to ·flush" the internal buffer (see IO.FWRITE in section
7.51) of any accumulated data. This function is performed
automaticallY whenever the buffer is filled, or in response
to such op~rations as CLOSE, ENDWRITE, NEWLINE, and NEWPAGE,
but the user may have some other reason for wishins it to

---------- Finning BCPL Swstem Reference Manual ----------

7 15

occur (such as the forced updatin~

references are i~nored.
of _ data file,

DUMMY channel

7.55 BYTEREAD and BYTEWRITE

These functions are similar to the "read/write seGuential Q

operations of RDOS. They each reauire specification of an
internal byte address, which is normally accomplished by
shifting a word address one bit left «(1), CONSOLE and
DUMMY channel references are illegal.

=BYTEREAD(FILDES,ADDRESS,NUMBER) will attempt
indicated number of bytes from the referenced
memory, beSinning at the specified byte address.
the actual count of bytes read (or any error

to read the
file into
It returns

code) as the
function result, which may be less than the number reGuested
if an end-of-file is encountered. Note that this differs
from the RDOS .RDS in that end-of-file is not treated as an
error condition until the file is truly exhausted.

=BYTEWRITECFILDES,ADDRESS,NUMBER)
indicated number of bytes to the
at the specified byte address.
returned as a function result.

7.56 BLOCKREAD and BLOCKWRITE

will attempt to write the
referenced file, beSinning

Ans error encountered is

These functions are similar to the "read/write block"
operations of RDOS, performing 1/0 in blocks of 256 words.
Unlike the ,RDB and .WRB error seGuences, any returned error
codes do not contain the partial block count. CONSOLE and
DUMMY channel references are illegal.

=BLOCKREADCFILDES,ADDRESS,BLOCK,NUMBER) will attempt to read
the indicated number of blocks from the specified file
(startins with the desired relative block) into memors~
beginning at the specified word address. Any error
encountered is returned as a function result.

=BLOCKWRITECFILDES,ADDRESS,BLOCK,NUMBER) will attempt to
write the indicated number of blocks to the specified file
(startins with the desired relative block) from memors,
besinnins at the specified word address. Any error
encountered is returned as a function result.

7.57 GETPOSITION and SETPOSITION

These functions are similar to the "GPOS/SPOS· operations of
RDOS. They each make use of a two-word ·position vector",
the contents of which describe a 32-bit relative byte address
within the specified file (in this vector, the first word is
of hisher sisnificance). CONSOLE and DUMMY channel
references are illesal.

----------- FinninS BCPL Ssstem Reference Manual ----------

7 - 16

=GETPOSITIONCFILDES,POSITION) will cops the current position
of the specified file into the supplied position vector. Arl~

error encountered is returned as a function result.

=SETPOSITIONCFILDES,POSITION) will attempt to set the current
position of the specified file to that indicated bs the
supplied position vector. Anw error encountered is returned
as a function result.

7.58 LINEREAD and LINEWRITE

These functions are similar to the "read/write line"
operations of RDOS. They each reGuire specification of a
vector which is constructed as a standard (packed) format
BCPL strin~. CONSOLE and DUMMY channel references are
ille.al.

=LINEREAD(FILDES,STRING) will input a "line" (usinS the
standard RDOS conventions) from the specified file into the
supplied vector. In the strins which results, the line
termination character (which may be a null) is included in
the character count. An "invisible" (uncounted) null is
alwaws appended to the line, in keepin~ with the standard
strine format (see section 5.32). Note that a 135-bwte
vector (VEC 67) will always be sufficient to contain an input
line. Any error encountered is returned as a function
result.

~LINEWRITE(FILDES,STRING) will output a Uline" (usinsthe
standard RDOS conventions) from the supplied strins to the
specified file. It is the responsibility of the user to
ensure that a line termination character is supplied at an
appropriate point (if the standard BCPL packed strine format
is used, a terminatin~ null byte will alwaws exist). Any
error encountered is returned as a function result.

7.59 CHANGEPHASE

~CHANGEPHASE(FILENAME,OPTION,AC2) provides access to the
.EXEC facility of RDOS. It takes three arsuments: a
filename in standard (packed) BCPL strins format, an option
value describins the operation type (mnemonics for these are
defined in the standard library header), and a value to be
passed in AC2. Any value returned by the called prosram will
be returned as a function result.

7.6 MultitaskinS routines

The routihes and functions in this section provide convenient
base level ~uPPort for mwltitsskins operations which are
compatible with the RDOS/RTOS/etc. philosophy. All of these
operations are non-standard BCPL, and as such are not easils

---------- Finnins BCPL Ssstem Reference Manual -----------

tr2~sportable to other lmpleme~t6tio~s. Functlon error
r e 'c; u 1 t -:.::. ,,~Y" E·: t. i' 0: a t 0: ci i 1"1 ide n tic a 1 'f a':;; h ion t.o F: It 0 ~:; I / C) i:~ 'f' r 0 j" s·
(see section 7.S). A NEEDS "BCPLM" direc~ive is necessars to
load these poutines from the librars. In the descriptions
which follow? familiarits with the RDDS multitaskin~
philosoPhs is assumed.

7.6:1. TASt(

TASKCRDUTINE,STACKSIZE,I.D.,PRIDRITY,ARGUMENT)
multitaskin~ operation, creatinS a new execution path
besinninS with the specified routine, which is called with a
sinSle arSument (the fifth arSument in the TASK call). The
new task takes the ~iven I.D. and priorits level, ana
e :<~:!c I..rU,'~:; with the spec i f i ed ITI a;.; i ITIUITI 5 td C k £; i;~ f.~ (01.:-. t.a i nf.·! d 'i" l' 0 ITI

free storaSe), Values in the ranse 0-255 are permitted for
t.he third and fourth drSuments: an I.D. of zero specifies
that no I.D. number is to be assiSned to this task; a
priorits level of zero specifies that the level of the
issuins task is to be used. The new task execution path is
terminated bs returninS from the initial Is called routine, or
executins a FINISH command, at which time the stack space
used bs the task is returned to free storaSe. Errors
encounterBd in the TASK operation are considered fatal.

7.62 XMIT, XMITWAIT, and RECEIVE

These functions sre used to pass
a~~r;;:!ed-"l..Iporl locatj.or!~:. irl fiIE'frlor':!.
communication between tasks. or
facilit'~.

one-word messaSes, usins
Thes mas be used for

as a process interlock

=XMITCLDCATIDN,MESSAGE) deposits the specified non-zero
Dmessage" in the given location, which must initial Is contain
zero. Ans error encountered is returned as a function
r€,!sl..llt.

=XMITWAITCLOCATIDN,MESSAGE) IS identical t.o XMIT,
the issuing task is suspended from execution
message has been RECEIVEd bs another task.

=RECEIVECLOCATION) ~;usF"ends the
specified locatiDn contains a non-zero message.
occurs (which mas be immediatelsl, the message

0:>:: c e :=.. t
unt.il

that
tht":'

unt.:i.l the
Wh€~f'1 th i·:::.

:I. ocat i Dtl :i.=:.
reset to zero, the task is readied, and the received message
is returned as the function result. No errors are returned
bs this function.

DELAY(COUNT) is a
a period of time
clock "t.icVs",

j·ol..lt.ir·le ~Jhich S;U·::;F'F!!n;s th0! is:.suing t.ask fCli"

eQual to the specified number of ssstem

Finning BCPL Ssstem Reference Manual ----------

7 - 18

7.64 PRIORITY

PRIORITY(LEVEL) is a routine which redefines the execution
prioritw of the issuin~ task to be that value specified bw
its sin~le ar~ument (ran~e 0-255).

7.65 SUSPEND and READY

These routines are used to provide for arbitrarw suspension
and (subseauent) readwin~ of tasks, based on their assi~ned
I.D. numbers. Specifwin~ an undefined I.D. number will
result in a fatal run-time error.

SUSPEND(I.D.) is a routine which will suspend execution of
the task with the specified I.D. number until subseauent
execution of a READY operation. If a zero ar~ument is used,
the issuin~ task will be suspended.

READY(I.D.) is a routine which will readw a task with the
specified I.D. number which has been previousl~ SUSPENDed.
If the task i~ not suspended, this routine has no effect.

7.7 Timin~ routines

The operations in this section provide access to timin~
information maintained bw the operatin~ swstem. These
routines are loaded from the librarw with a NEEDS uBCPLT 8

directive.

7.71 DATE and TIME

Each of these routines returns information in a (minimum)
three word vector supplied b~ the callin~ proSram. In order
that the~ return valid results, it is necessarw for the date
and time values to have beenprop.rl~ initializedbw the
system at start-up time.

DATE(VECTOR) causes the current date to be copied into the
indicated vector. The order of storase is daw (1-31), month
(1-12), and ~ear (e.~., 1977),

TIME(VECTOR) causes the current time-of-da~to be ~opiedinto
the indicated vector. The order of stora~e is seconds
(0-59), minutes (O~59), and hours (0-23).

7.72 ELAPSEDTIME

=ELAPSEDTIME() is a functi6n with no arSuments which ret~rns
as its result the number of seconds which have elapsed Since
the start of the current BCPL proSram. Note that inteSer

------.-.-- Finnin~ BePL Ssstem Reference Manual ----------

r' .: 1'., " r .::' ... ' I _.'.. .. ,: :, (ji

8 - 1

8 Debugging Facilities
====================

••• this chapter is not ~et available.

---------- Finning BCPL Ssstem Reference Manual ----------

9 Special racilities
==================

9.1 Overlas routine

The BCPL overlas routine allows for a convenient interface
with the operating ssste~ overlas facilities. It is part of
the standard run-time librars (does not reGuire a NEEDS
directive), and currentls suPPorts one overlas node.

9.11 Preparing the overlas sections

The simplest overlaw is that held in one source file and
compiled as a sinsle BCPL section. This is compiled with Lhe
global Sand 0 switches? the former to indicate that it is a
section (not the main proSram) and the latter to include
overlas initialization code at the end of the segment.

If several sections
onls the final section

are to be loaded into a sinSle overla~,
should be compiled with the global 0

s~.Jitch.

SecticlrIs C, II,
the 0 switch.
SI.,Jitch,

F, and G are the onls
All sections, of

ones to be compiled with
CC)UT'S;€'~ , T'ew_li T"e the S

The main (resident) program which will use the overlaws must
also be compiled with the.slobal 0 switch. In this case, the
code Senerator will recosnize that it is the main program and
not an overlas, and will SeneT"ate special code for the
overlas load operation.

9.12 Loadins the overlass

Overlas components prepared as described In section 9.11 form
standard operatins ssstem overlass, and mas be loaded in the
normal fashion usinS RLDR. This is discussed in section

9.13 Usi~s the overlass

ThE~ D\lc1rlas f:i.J. .. ,? j,.:::. c:'F',a,",E:r::I dut,o/'i,aticall,;:! ~JhE~n the F"r·D~.iT'cln, i.s.
initialized (on channel 0, but the user does not normalls
!"i f.~ "': ;::; t. 0 1 .. :. ;", 0 I,.) '1: .. ;"1 j, '::;;' • ::<:1 v ''0 r J. Cl ':! !;; a r E~ (.1 l' 0 'J ;:;.~ h t :i. n t. Cl ITt e IYt Ci T' ':! b '::! U ';;; '?:!

of the OVERLAY routine.

DI)[F:I...PIY·(t:;EGi',·j[NT., NU~in[F:) :i. .:::. d f outj.I",£·:· t.o bY" j, rl~~ ,,;:1'1 o'..)e T' 1. d':;

::; t·: :::.i l'j; ''0 r', t. il"l t. 0 !"-I E.>!'i, ;::' .. '::! + :~; f·:· ~:!.I'(I E'!"I t.~; ·::1 r f.:~ r·,1.l r(i t. £~ r (:;: oj '::; E.> i~'l '-' e n t i a J. J. '::.: ~

besin~ins with zero and increasing bs one each tilTt~ a comma
appears in the load command seouence. Overlass are brousht

.... -.. F :i. I",!", :i. j",g E:c::r-:'L :::;':!::; tf::fii F:f.,' f €.:' r E,'nC:'2 r·1anl..lB 1 '

.:~ ';:: ,I::.' i ... -! i..i i:.-! '::~ '~ •• , ;:.~.! f] ~ :::' u t· .;::. r- ,::~ ('C. ,~~. > i f"I :i. 'L J .;::. 1. 1. ::. t:. (:j un c () f'l d i t· j. {J r! ;::: 11 '::;" .,
That is, evers call to OVERLAY initIalizes all ~10b61 :outine
c·: r'l t '('. :i. €~ ':: ci €~ f :i. f"I ''2 ci :i. I": 't .. j-','2, .:::. F 0:' C i f:i. .-:.'! d D 'v' £;, 1" 1. d '::5 .:; .::! :::; HI E:' r, t. • I t i::;.
the 1" 1'::' 1" 0 r €.! F· 0 s; ~::. j. b 1. ;;;:, f Co r () 'v' (.:.: r 1 a ~:I so· t D s; h arE: :::.i 1 D t, d 1 ~; t h d t c: 0 /", t ~i :i ,
constart routines;
E:>:t. relT,E:' caut i on +

Some restrictions
naturall~ imposed

th i·:::., how.;.:"'.,'£'.' r?

exist on overlas
b s t.l"', est. l' '_I C t 1.1 T' e

should be done onls with

code apart from those
(e.~., no OVERLAY calls

from within an overla~ see the operatinS ssst.em manual).
Overlas sect.ions must not cont.ain NEEDS directives. Also,
unpreciictable faults occur if slobal routines are called when
the overla~ in which thes are defined is not present in
memors. Such faults are extremels difficult to detect, and
users should exercise appropriat.e caution when allocatinS
routines to overlass.

9.2 Ssstem call function

tl -:;F"ecial
c OJ"(IITIUn i c cl t E:

f, . .i/,,'ct. i or', i -::.
r:.iirect.I':lltJith

F·' Y' 0 v :i. dE:d to
thE'! 0 p fl.' rat i 1"1 :::i

enable the user to
s~stem without havins

to ri£·:-:; 0 rt to a'::;sE:IT,b l'::!' :I. ar,Sua:::.!£;' F' r oS ran,rr, inS. T his meci"ii:;:n i ~;n!
is, of course, hishls implement.ation-dependent, and should be
used sparinSis. It. is part. of the standard run-time librdrs
and does not. 1'e8uire a NEEDS directive.

=SYS(COMMAND,ACO,ACI,AC2,VECTOR) performs the operat.inS
ssstem function specified bs the COMMAND srSument, usins
initial values for accumulators 0-2 as specified bs the
ar~uments ACa, ACI, and AC2. The result vector, which must
be a minimum of three words in lensth (VEe 2), will be set to
the t h r e ,~-:" .:;;: c c: U rfllJ 1 .::;: t. 0 r· v·:;:]. U Eo'S:· .f' oIl C) ~~ i n ~:j thE: 0 F' €:.' r- a t i un. f\
~unction result of TRUE is returned if an error exit was
taken bs the operatins ssstem, FALSE ot.herwise.

Note that the necessars accumulator values are passed exactis
as specified, a~d it is the responsibilits of the user tu
senerate bste addresses, bit values~ or whatever is
r (:'~I (.:~ U i T" EI ci ...

9.3 Ar~ument input functiuns

A pair of functions is provided to allow the user convenient
access t.o the console arSument input mechanisms uf the
D i-' E:' r .,,: t :i. nS:::· '"i=; -r. E·! 111 • 'r h ,,:! ':;.,".! f U 1-, C t i on '";. ~ if r E' C,l '-l i r f::' d)' d 1'" f.:! 1 0 cl Ij t·:· d
from the librars with a NEEDS "BCPLA" directive.

=UNIQUENAME(STRING) (tdF'ic<:;:11'·::: .:,,:
filename) according to whether the executins proSram is lr,
t. hE': "'f 0 r ';'0' E~ 1" ()I..I n (:.1 • Dr-" i·:.l c: c k ~.:; Y" ClI . .I1"1 ci • €~ 1"1",/ i r' onril f::'nt • l,j it hil"l t. h€-:,
STRING arSument, all occurrences of the 3-character Sroup
"Z<Bchar)CFchar) are replaced bs the sinsle character

Fin [", 1 n ~:.:; r: C F> i.. ~::; ':::: ~::. t E~ ITI F< f.,' fer E' n c I~' hi::: n I..J a].

0-3

<Behar> i~ the prosram 15 in the back~round~ <Fchar>
otherwise. Finalls, all space characters are removed and the
address of the resultant strine (the same address as the
original strine, which has been permanentls modified) is
returned as the function result. Thus the seauence

COM.FIlE := OPENCUNIQUENAMEC 8 % FClI.CM 8),IO.READ)

would open the appropriate ClI command file.

=COMARG(FILDES,NAMEVEC,SWITCHVEC) is a function to input and
parse the next arsument from the ClI command file. FILDES is
the appropriate file descriptor~ NAMEVEC is a vector of
sufficient size to accept the areument name as a standard
(packed) BCPl strins1 SWITCHVEC is a vector of leneth 32 (VEC
31) to record the bit settinss of the two words of switch
information (TRUE - set, FALSE otherwise). SWITCHVEC!O
corresponds to local/elobal switch A, SWITCHVEC!l to switch
B, and 50 on. The number of local or elobal switch settings
for the current arsument (i.e.v a count of the number of TRUE
entries in the SWITCHVEC vector) is returned as the function
result. If no arguments remain in the ClI command file, the
special value ENDSTREAMCH (defined in lIBHDR.BC) is returned
as the function result.

9.4 Network 110 function

A special function is provided to
communicate usine the Finning network
An understanding of this protocol
followine. description.

enable
protocol

the user to
(nNETCOM").

is assumed for the

This mechanism reauires the use of modules in the NETCOM
librars which correspond to the particular hardware
configuration in use. These modules, beins non-BCPL in
oriSin, must be loaded followine BCPlIB.lB in the load
command seauence. The BCPL NETCOM function is loaded with
either a NEEDS "BCPLN" directive (which disallows phantom
receive operations) or a NEEDS uBCPlp· directive (which links
the phantom receive commands into the BCPL GETVEC facilits -
dsnamicalls assigned buffers ma~ therefore subseauentls be
returned usins the PUTVEC operation). If both directives are
encountered during the relocatable load operation, "BCPlP"
will take precedence.

=NETCOKCOPCODEfLENGTH,STATUS.VECTOR,BUFFER) causes one of the
standard NETCOM operations to be performed. The operation
codes are defined (in LIBHDR~BC) as manifest constants in
such a fa~hion that the number of bstes in the transmission
need merels be added to the aFPropriate op-code. BUFFER is
the word iddress of the communication buffer (supplied bs the
user in all cases except for "phantom receives·).
STATUS.VECTOR is a Pour word (minimum) vector which contains
the initiating ~rocess number (10), the responding process

Finnins BCPL Ssstem Reference Manual -----------

numb0r (!1), the actual message lensth following the transfer
('2), and the address of the comffiunication buffer specified
or dsnaffiicalls assigned (!3). Ans erro~ code sUPplied bs
NETCOM is returned as the function result. A special case:

PORT := NETCOM(-l)

is provided to allow deterffiination of the current MCA part
number.

9.5 Extended librarw functions

The routines and functions listed in this section are verw
special-purpose in nature, and are nat defined in the
standard librarw header (LIBHDR.BC). They are instead
destribed in an additional ("extended") librars header
(XLIBHDR.BC) which is listed in Appendix D. Persons wishing
to use ans of these operations ffia~ either reference the
entire extended librar~ with a GET ·XLIBHDR" directi0e, or
ffierel~ reproduce the desired function naffie(s) in a GLOBAL
declaration within the user prograffi. Note that the same
global number ffiust be used if this second alternative is
emF' 1 c)sed.

9.51 String manipulation

These functions are used to manipulate strings in standard
(packed) BCPL forffiat (see section 5.32). The "invisible
null" termination convention is maintainedthrouShout. A
NEEDS ·STRFUNC· directive is necessarw to load these
functions froffi the librarw.

=COPYSTRCSTRING1,STRING2) copies the contents of STRING1 to
STRING2, which must be a vector large enouSh to cont~in
same. The string length is returned as a function result.'

=SEARCHSTRCSTRING1,STRING2vINDEX) searches STRING2 for the
first occurrence <if ans) of STRING1, beginninS the search at
the specified inde~1 The index of the found substrins (or
zero if there was no match)
r f:!SU:I. t, ,.

is returned as a function

=INSERTCHAR(CHARACTEP,STRING,INDEX)
character in STRING at the specified index.
extended with space characters if necessars.

thE! ~:.F··t"!C i 1" i eci
Tc)e .=~ t r' i rl9 is,

If INDeX i·;;;

zero, the character is appended to the strin~. The index! of
the inserted character is returned as a function result.

=INSERTSTRCSTRING1,STRING2,INDEX) inserts STRING1 in STRING2
at the specified index. STRING2 is extended with space
characters if necessar~. If INDEX 15 zero, STRING1 is
app~nded to STRING2. The index of the last inserted
cha r 2lCtft r :i.:::. r·E'tl.J l'I"'i!:",:i d';;; a funct i 01", J'esul t.

. F j, r','''' i r·i:::.\ f: c:: F'I... t;~! '::; t i:.~rrl F~ef 0:' 'i' f;" r,c i!." t"l c<nl.J oll·

c'or'J"i,',i'''luir'I.",\ tel t.hE:~'.':"ij c,f' t.hE':· ·,:;tl.i.rIS:;f Dr LENGTH c:i)o;i"actcY'''",?
whichever is less. This substrin~ 1S COPIEd to STRING1,
which must be c vector lar~e enou~h to contain same, and the
1 ".~ '''I~ th 0 1" ~::; T f~ I N G 2 :i. ~:. a ('j..i us; tf:ci tor e f 1 E'C t t.hf:' f:!;< t r ac t. ed
characters. The len~th of STRING1 is returned as a function
T'f::'::;ult.

=SCANSTR(STRINGl,STRING2,STRING3) searches STRING3 from the
be~inninS for an occurrence of STRING2. If found, all
characters to the left of the match are moved to STRINGl~ all
characters to the ri~ht. of the match (onls) remain in
STRING3. If not found, all characters from STRING3 are moved
to STRING1, leavin~ STRING3 empts. The function result is
TRUE if a match is found, FALSE otherwise.

9.52 Time routine

WRITIME(STRING) will write the t.ime and date t.o the current.Is
selected output channel in the format "1.29 P.M. ON 27 JULY
1977", followed bs STRING. A NEEDS "TIMFUNC" directive is
necessars to load this routine from the librars.

9.53 Double precision arit.hmetic

T h j::~ .~:. i?~ C F' Cl r .~: .. t. i G ri ":::. .{;;: r· c' u '~;. {~~ d t.. D F·' r- 0 ' . ./ 1. d ,:':'1 i:~ ci () u I~J]. f:'~ F·- r f! C J. ~::. j. C) n
inteser arithme~ic cap~bilits in the FinninS BCPL ssstem
(a:l. J ::::' :) :j. n ::=,'; ~/ .::: 1 U 12: .~:. i n t. i"'j .-:::, '," ~::. i"i ::;;.2 .:-........ 2 1 1 .:~. 7 :; .:~. ~::~ ~~ :' ,S -'1 ..)') 0} t, N E [fi ~;:;
o DB! ... FUNC II

ThE':' 1iI D';;;· t /'; C' :~:.;; .:;. t. i. \/ E' r I U fi, b ;::.:' /"'. (l.. c·:· .) ~I .:;: D 1"1 (.,:.;1 t') i t. f'" D 1.], () 'rJ t:1 () C:i '::;! :.::~ 1.. ~2~ .;;:: j' J:;)

;".)J..t·:::.~., ~.;h:Lc;"·j J.'::: :~::~147!l·(:,f::~!!64C) :i..::. ra·::;.Er· .. .,..'(=~·d "f.: .• G ;'''1 a V€::' a f(IE~an::,r·j~_:.;;

of ·undefiGed". All 8ri~hmetic functions check for overflow-
" ". '.: ,:. t. t () ' .. : n oj ".! f :i. 1"1 c-: '::: :;. 1

T l"p::':' ,'::; c .. Ii~:;]. t·:, i'"" r f: :::~ :i. '::;. J. ;J J"'i \.! .;::: r' j, .:::: 1::-1 .1 ;:,~,:, ':;;. : .. ! r·· 0 f"r hI hie h t. f"'p,·:;"::':. €~, f';...J net i.' D n ;:~

C: r:·· ;'::~ Y" D t. c:: .~:: r I::" t: ':,.::' '~;, t C 7" (.:, ,~:: t. c' ,,· .. i a .~:. t. ~J C)." ~'J c:· r d \! €.:' c t I,::. T" -:;. (Iv' E C :1.)~. ; I "j (.:,

f () 1 J Ci , J :i. !"'I :;.~:; .:::: 'j"].. t :~'; n, !:..:' t ::, c c:r F l~-: r' .:::: t J. 0 n ':::. ~::; T t:' F" r' C) 1..,-' J. () f. .. :. i..:i :

::::!:i .:. h 0 f ••) :-: ('1 !~ r: :;
:::: fl., (>! D [! ((:-{ :.' I: '.
'" D , '::, 1.../ E: .; (:i ~ E:)
'::: :Ct.: t) E C·:; < (':',)

""fi'i (if::::: 0:: (1)

:::: fi .; : .. ~ 1...'1... -:: (', ',' f:)
::.: 1:1 ·i i:! I I.,) ((:'1 ;; :c.:)
::: D .; h: :~~~ r-i (r::j !,' L: .)

·C.

.',
,"I

H

(1
.. \
"

.,
.-\
i"t

.'~.
H

(\

. ~

.:. ., ."
..

~~
.,
':. -"

....

.;. ,

., ., "

.. '\.
'''I

ti + :c.;

ti r:
... (\

tl I{[:; (1
.~ ,:&' ',',
1"1 ., . .1.";'
.. \ // r: 1"1

i~'1 F:Ej' .. \ E:

.:.

In addition, two 110 operations are provided whic;", operate on
the currentls selected channels.

=D.READNCA) is t~e double precision eauivalent of READN (see
section 7.46)y except that a pointer to the two-word result
vector must be provided as an ar~ument. This pointer is
returned as a function result.

=D.WRITEDCA,WIDTH) is the double precision eauivalent of
WRITED (see section 7.41).

9.6 The "gA librars

this section is not set available.

f" i n r: .!. r, ~:.~ 1:·: C F' I... ::::; ':::: :~. t .:.:.:. iTi F,.: E' f .. ? r' f'~ n c (.:.:, j ; i::: r, U d 1 ."

:::: :::: :::: :::: :::: :::: :::: ;::: ~:: ::::

Th0~ f()llo~-Jins 1,,JOT'ds
Th",:'

a rid s \:!lTlb 0 1 s
nanll? of the

representation on the Nova is siven
examples or ssnonsms are siven in the

are treated as atoms bs
ssmbol or its standard
the first columny and

B a -:::- i C <,; '::l I"fl b 0 1.

i d €~ r-, t i f i ~:~ r
f"ll..lmf::,e r-
~;; t r- i n:::_i C orl-::: t- -"~ 1'-1 t
character constant
TF;:UE
F{~Lt:;[

I?
I

I::: I) l)

(![Ci!...'

();::, L DC"

.....

J- (
l-)
)FC

Examples and ssnonsms

A 1--1:1_ F'l~F~ST TAX • F~t~i T [:
12\~,
u (:~f D

---x-'

1..1..,J
F~IJ

EO
U[
f. __ [

elL
1... ~::::

?::~49 :fI:3;-'71
"*NTEE;T"
')1 '*NI

! ___ ~::; II :I: F- T

i'i Df
..... I...UC(,ND

: ... DCir:!r:.~

t«(-,I: +-(:1.
J- ;. (:-,:U -t-) 1

~. D ...

BE
LET
r:':tND
}mEr~":
L.OOP
ENDCASE
F:ETUF:N
FINISH
GClTO
fU~SULTH)
~)WITCHON
INTO
F~[PEAT

REPEATLJNTIL
F~EPEATWH I L.E
DO
UNTIL
WHILE
FDr~
TO
BY
TEST
OR
IF
UNL.EGS
CASE
DEF:~ULT

SL.eT
OF

.,.)
... :.

THEN

ELSE

• • ••

............ -....................... r-:·inf"lif"l~:.i BCF'i... f)'~~f:;t(:,ffI f;:efE'r-€,'rlc~) i"lanual _ _

:::: ==:::=:: :::: :::: :::: :::: :::: ::::

ASCII character codes

The followins table contains a list of all the ASCII characters
recognized by the BCPL cOffiPiler.

Deciffial

7
8
9

10
11.
r) . ..,.
13
32
:~3
34
3"" ~I
3b
31'
38
3 17
40
4:1.
42
4'· ,., ... ")

44
4"" , 1

4'::·
4?
·48
4':?
~:5 0
:51
C" .-..
\) ... ::
~5 :.':s
~:5 .:~.

~:;~:;
r:' i
.... Il..,

1.-: ,
... .1 /

~~j [:

~.:59

60
61
l. "') '_.' ... ~.

6:::-
':-:;,.t.}

6!:.;
6{.
i. '"
' ... '1

I'-··bit
Octal

007
010
011
012
013
014
015
040
041
042
043
044
045
04b
041'
O~.iO

O::i1.
O~:i2

0~:j3

054
O~)~)

()~:}b

(")"C7 ., ... J,

()60
06l
062
063
054
() e:.~)

0/".:)
061'
070
() I' 1.
07'2
073
074
O?~i

0'76
O'i''?
100
101
102
::'03

Cha ractE) r'

BEL. (be 11)
BS (backspace)
HT (horizontal tab)
NL. (newline)
VT (vertical tab)
FF (fc)rffi feed)
CR (carriase return)
SF' (space)
!

%
&

* +

I
o
:I.
'''l
A' ..

:.3
4
~;

6
7
i3

<:

>

(~

A
B
C

F' :i. f', Ii i 'i~~: E:C r't.. !:; ':1':::· t. e ITI r;:C) f' E' i" r:.~ ric £~ r·1 anua 1

,". ,",
I*'l .'(

.,~)G :l. 04 [I

.S? 1 O~~; C
70 :l. O{ r'
7l :1.07 C J

'7'1 1 :1.0 H / .~

l3 :I. 1 J. I
74 J. 1 ~) . - J
"'1 I!!"
/~I 1 J. "7

~, 1-(
7f.:. J. J.4 L
Ti' :l 1 ~:; M
78 1 1f.:. N
7(? J. J. 7 ()

80 120 F'
01 121 !l
82 :I. 2:~ f~

B3 i '}"z
J. ""- ... 1

C '
D4 J.24 T
B5 l25 LJ
B6 12t") I)

Bl J.27 W
88 130 X
.-, r" (:).;- 1 31 Y
90 j ··z ") '..:,. Z
9:1. J.33 [

92 134 \
93 J.35 J
94 J.36
(7" C:'
l·.J 137 (underl i r"!f:~)

97 :I. 4J. is
DO :I. 42 b i ,
(:;1(::-

i 1 43 (.~.

:1.00 :1.44 d
:I. OJ J. 4~) €~

:J. 02 146 f
:I. ()3 1. 47 i'i
1 0·4 1!:50 h
J. O~:.; :I. ~51 i
1 06 1. ~52 j

1 0'7 :1. ::.;] k.
lOB I. ::'·4 1.
'f () .. ? :l. t::"I::'

ril i. ' J

1 10 1 ~5l:· n
., ., ·f l ~;'7 0 • f • .I. J .

l :J. 2 I. 60 }":.,

·f :I. 3 1.6:1. G .i.

1 1 4 Ui2 r ., 1. ~:.; :J. ,':: .. : ::; .I. ,_.' ,
J ., ,r. :1..".:.4 t .1 • ~ .. '
1. i

1.l.~5 u .I.

J " c· J f.){. '.,/ .l.

:J. 1. r-. 1 .~:.7 ~,J .':--

:I.::~ 0 of 70 >~ J.

1 :~ J 1 ::'1 ';;:!

12::: :I. ::'2 z
J. ..••• i\ J. :.:.- -4 (vertical bar :> •.. ~ ·~·i

1 ::~S :1. 76 N (U. 1 dc~)

Standard librars header

This appendix contains a copy of the standard librars header from
the file "LIBHDR.BC".

///
// //
// FinninS BCPL System: ·Stand~rd" Library Header //
// //
// Programmer: D. DYment, FinninS Tractor
.I/
// Revision Date: 24/July/77
//

//
//
//
//

///

GL.OBAL. ~r, (GLOB

// In the comments describing these slobal entries,
// the following abbreviations are used: // * - the global is initialized automaticall~
1/ A - NEEDS "BCPlA" (argument input module)
/1 C - NEEDS "BCPL.C" <character I/O module)
,/,l

//
/ ". ,,- .I

//
//
//
I " / ,I

! I
/ .~

//

~:;YETE~'l

~nf~lfn

STDP
(lBOf;;T
PMf:~ET

GETt)EC
PUTI.)[C

XID

L.DNG . ..JUMF'
I~F'T()I}EC

GE'TBYTE
PUTBYTE
P!:") Ct;: ~:; T r~ I NU

D - NEEDS "BCPL.D D (debugginS module)
I - NEEDS "BCPL.I u (basic I/O module)
M NEEDS qBCPL.M" (multitasking module)
N - NEEDS UBCPLN" or "BCPL.P" (network I/O modules)
T - NEEDS "BCPLT" (timer module)
Q re~uires the "Q" library th~~ :~ 1 DL"iC:"! J.
fn references a function t.h0~ £~ 1 c;.C:!3 1 J.

~,t ·1· ' ... hE~ ~~~ J.
.•.. t he :::.~ 1

J. 'v'

0 //
1. ... / /

I r,
" l/ ~;.: /

-r 1/ I
, .. ' /

" / 1/' ... / i

1.'":' " ..-..... / .'
i.:
.... 1 /' .>

• ":1 " /
;"

e /

• 1 () "./ // • .,
f

1 :!. ! .'

• '! 2 , ,/ • ,
" ":, / /
.1. ~.I

• " /l: /1 ./ . , .i • "'1 " ,
1 ~5 / I .,

Dba
ot.)S

* :t
:$:
;-f::
\' .. "
"I',

:t:
t:
,~,

'I',

D

* ".,.
't',

',J'
T'

'.¥
'1"'

l
¥.

I
1

fn
('t

i"t
1't

\/

'fn
r t
frl
.. ":- :1 ,

'fn
rt
fn
+
I II

T't.
·rr,

references a routine
is. Ci vaT'iabIe

allows access to system data
entrs point to besin processinS
return to operatins system
deals wit.h errors
data for abort/post.mortem routines
obt.ains a vector from free storaSe
~eturns a vector to free storaSe
execute operating ssstem call
execute processor I/O instruction

returns current stack pointer value
does non-Ioc~l Jump
"APpls TO VECtor"
reads a bst.e from a packed strins
writes a byte to ~ packed strins
F' 01 C k. '''; e c tor 0 f c haY" '~:. j. r Ito i:; t 1"' :i. f"1 i',l

.... ~ - F :i. n n i l"i:::'~ L~: CPt.. ~) ':3~:· 't f: III P e f £:- r €·~nc c::' f'l anu .;~). --..... .

1...1 NF' t1 Cr:: ~::: T F: I tiC)
I T r"i C; !.:.:
IENtif:LE
1E><IT

XMIT
Xt1ITWPIIT
F:EC[I I·)E
DELAY
F' P I () F: I T Y
':;USPEND
1:~E:;DY

OF'EN
CUJ~)E

DELETE
F:ENM1[
[lETt::
F'Ul.B
GETC
PU1T
PUlB(~cr~

FL.Ut;H

DYTEF:E(~D
.BYTEWf~ I TE
.BI...OCI\F:EAD
[:I...OC"<I .. ~F: I lE
CONSOI",F.:: I N
CONSOLEClUl
GETPDSITIDN
SElPOSITION
LINEF:EAD
LINEI,.jRITE

i"lAP~;TDF:E

BACKlPAC[
t::'r~ I NT Gl... () :cr·) I".~;
F'F: I NlENTr~ I E~;

j'7 1/ 1) rt
lE: // n rt

:1.9 ./1 0 r·t

creates a~ interru2t task
e~ables priorits interrupt ssstem
e~its a~ i~terrupt service routi~e

:20 II M rt creates a ~ew task
:21 II M fn tra~smits an i~ter-task messaSe
f "') r)
". 0':" ".,:.

~24

: 2~5
1 r) <.
i ... :.. C)

L51
• -:'1
+ '.:.

: ~~4
!35
• -1 f.
.; • . ..J '_.'

:39

:40
:41
:42
:43
:44

// M fn
// f"l fn
// t·1 rt
// t .. j rt
// M rt
// M fn

// I fn
f'n /./ I

I I / , , fn
:r. fr'l ./ .l

:' ...

,l/'

;' / ... ,/

I ,
... .I

/.1

T fr'l
I rt
I fn
I T't
I 'rt
I rt

I fn
I fn
I fn
I fn
I 1"11

: 4:; /'/ I l\t
:46 // I fn
:47 // I fn
:48 // I fn
:49 ,i/ I fn

! ::j 0 / .. / rl r t
::::.;1. // I) r·t

tra~smits a messaSe & waits
receives an inter-task messaSe
dela~s execution of current task
chanses current task priorit~
suspends current task execution
makes reads a suspended task

open a file for I/O
close an open file
dE'lE!t.t~ a file
r EH'I <:$111 e a f i 1 e
read bste from a "fast" file
write bste to a "fast· file
read char. from a ~fastn file
write char. to a "fast" file
return char. to a "fast" file
flush "fast" file output buffer

seQuential bste read from file
seQuential bste write to file
block read from file
block write to file
read character from console
write character to console
read current file position
update current file position
read a line from a file
write a line to a file

D U t F·' U t 'j' C I..J t :i. f"i i!:! ,.', a HI E' ':::';' ,~:, n t. r '::1 '.:: C) u ri t. s:·
un l,.,) i r,j '::; t .. 3ci'.
write out Slobal vector

:53 II D rt write out all rowtine entries
PRINTPROFI~ES ~54 I; D rt write profile counts
POE ThOF~TFi'i
USEF:I:CPUIJ

D(.i lL
TIME
E~ L. ;':\Fr:3 EDT I ~~ E
C C) to'j /':, r: CJ
L' ~ .. ~ I !~:! '.../ r: t-·f t'j ~~.~ r::
c II r~ N G r::: re• , .! t, ~; c:
OI)Ef;:l...ti Y

r·IETCCM

Cl~
I i'-·~f~!·:[~t)

., t. r)
-i " •. ;A. ••

// D It se~Eral debu~~ins routine
,.,/ ."" ;", .,.1-

1.j I'i,,_ U ',,:;. e r '~:: u :':,- P 1 i \.:. .. (.) d I;;'~ t" i_I:::'~ Si i I' i :~:.~ r C) i..J t. i n t·:,

.. ~. r- n

" T fn returns time of da~ in a vector
" T fn returns elapsed time since start
// ~ fn read an ar~ument from (F)COM.CM

; (, {. i i (1 f 1'1 C C) n .:;.; t. rue to; "~ r C) i..I n ci " r I=.' 1 c~ t E.' d '''I 2- riJ (.' '::;.
/ ./ 'f n J. 0 3 d d n d s·:· rl t. c' r 1"1 ·::i [[I e d F·' r· C) si r a HI

y .,," r)
.~ I, •• ' •• .' ;{;; f !"; 1 n i:>:j Co V E' r]. 2; '3 ~ r' I~~ S· E: t t :i. rl ~:;; :..J"::. i!:! fj ~;.; 1 01: ... b 1:;

'70 /~ r v la~t character read from CIF
;;., 1. ./ ,/ ,." './ cur r I,:' r'l t. i rl f·· u t f 1. J. e .: elF;. oj e·:::· C (. i F· t (..; ',"

DUTCHf.'!\!
~:;ELECT!. NF'UT
'3EL.ECTDUTPUT
PIlCH
UNPDCH
WF:CH
NnJLINE
NEL~PAGE

WF:ITES
WFn:TEF
I,Jf~ITED

LJRITEOCT
I .. Jf~I TEHEX
l,Jr~ITEN

~JFnTEO

! .. JF: ITEH
f;:E:~IDN

r-::EADNUMDEF:

FIND I N~:":.!T
F' I NDOUTr:'UT
F:EI,J I rID
ENI::r::E:~I:!

E:NDl~f~ I TE:
ENDTDI r~r'UT
i:NPUT
OUTPUT

<l'·)GLm·:

.) .. ___ or;.

" " ~.

tT5
!?4
+ -}r.:':
,)0 .. ' ". ..

+ -, " v ... c:=

: Ti'
:78
:79

:80
nH
: t~2
: 8:~
:84
+ ot':'
.,;. ' •• } J

: 8tl
:87
:BB

: 7'0
• -:# "! . / ...
:92
v r) "J
.. l ... J

.c;..o. ., ,

: ~·i· ~:i
~ r) ~ + ,/ ... }

i / .' • V

/! C fn
,// C ,...i:..
1/ C r-t
// C r·t,.
II C rt

/ .,/
I i

, ,
i /

1/
//

J .,'
/ ;"

:' ,.I
I ,,'

, / " ,

C T't
C r·t
C rt
C 1't.
e rt
C rt
C rt
C It

// C fn

/ / C; frl
/./ C fn
./ I' C f'l'j

/ i~ c: ofrl
,.lll C fn
,/;' i':~ '(-""1"1

// C f'n

;:\

Ci,.jr·~··f:-ri <d .. ;t·f'U~ .. r ... Tc C:C)F'j c;e~::.Lrip·LDr·

selcc~s iGP~' file as CUI r?n~
·:"c· }. ('.: c t~; C<Ut.f'ut f il e ;1; s; cUI'rent
read a character- from err
c ;:~'.j !::·f.,'·s r?DC~1 to J'(£?tu r n cu r' r·,:·~nt CH
write a character to COF
writ.e a newline to eOF
write a newpage to COF

write a string to eOF
write a formatted strinS to COF
write decimal number in given width
writ.e octal number in siven width
write hex number in given width
write decimal nu~ber to COF
write octal number to COF
write hexadecimal ~umber to COF
read decimal number from erF
reao number in given radix

open file for "fast" input
open file fer "fast" out.put
rewinds elr if possible
end current Input; unset selection
€d',d c;.jr·r·~~nt DI.rl:,r,·ut; 1 • .JI",S;f:t sel,,:-!ction
closes COF and reDPens for input
y-·",:tur·r,s elF '-::;E!SC1'iF,tor'
returns COF descriptor

Ssstem manifest constants

I~ Y T E ~:~ F' E:: f~ t,] :] r;~ 1)
t'~fl:X: I ~·.~T
~ .. r:::NGT!·!

'1
./.

'"] .., ~~} .I. -:.'
.••. \ •• 'k." \..Jl

.... ;::;I...[T
rtUi~1MY ... :J
CONSOLE - -1

// P~stmortem settings decoded bs ABORT

F' h , F' ~'j
F' t~ + ti I~ F'
F't'f. GL.Df:
r:'M. ENT
F' ~I! Y I: J:; C :'.:.:
F'~i \. r'F:OF
r'M, U'3r::F~
PM. TF:t,F>
I::' t'i , (.1 I·: Cl F: T

.. ' :I.
..... ,,) -, ...
.... -4

n .. ~ ...
... 16

"1"') .. -. '-' .~:..

... ':')4
.... J.2B

~J.' J. (:,(}OJO

•. I)

-, 1
PH,~f)E. f:;W(lF'
PHt,SE. S~JAF'DEIJ,
F'H{~~)E, CH(.lIN
PHASE.CHAINDEB

." :IJ: 1. 00000

." :JI:100001

II SYSTEM specifiers

GLDBtlLZBf,)SE
GLDBALNBASE

....
-
::::

0
1 r,
.::.
"1

GLDBf~LBF;EAK

GLDBALTOF'
STACKBAm~

STACKTOP

"" ~,

f.; T fi C f< S F' i~ C E
l.JECTOF:SF'ACE
PPWGBASE
Pf~DGT()F'

ADDHESSOFGLDBf.!lL

,~DDf\E S SDF"
GF:()UND
SETTABhlIDTH
SET~:;LOF'

/./ OF-EN filO c:ii::"s;

I(),t~F:ITE
I(),FI")F:ITE
10. r.:EtYOtJF\ I TE

1/ NETCDM up-codes

....

....

,. ..
....
_.
....
_ .
....

....

....

.. ,

....

....

""

....

.".

NET " C:;::,:C')
j'·!ET • I:'F:C')
NET. \(I1T
NET. XC')
NET,XXMIT
NET. (~XhIT
NET. TEf;:i'i
NET, F'OF:CI)
NET. F'DF;:C',!

II: 1. 1'7-;':"7
.... tOO '.37"7:.:.1

"" ~1:OO?777

.... *0:1. 3::'77
".. :fI:O 1 77"77
.... *023777
.. , :jJ:O:'::777';:'
.. 11:0:,:"?7??

"" :fI: 1. 0 3 '/ '.7 '?

4
r.;-
.",1

6
7
El
9 .,
• i.

1.
:1
:I.
:1 •

') \,

J
r)
'7.
'.J

·t.l

0
.\
.i • r,
,,;',

:3
4

//
/ .,/ ,

;/ /1

" /

" " //
//
//
//

/ .'
/ "
.' / .'

/ / , I

./' ,/ "
/ ;'

.'

//
~/ ;'~

.. ,"" /

/ ~/ /

/' ,I" , /

,.l ./~

,.. ,l
; I

base address of ZHEL siobais
base address of NREL Slobals
break point of slobals
top address of Slobals
base address of current task stack
top address of current task stack
space available on current stack
space available from GETVEC
base address of proSram NHEL
top address of proSram
address of slobal IN
memors reference address
user ·sround" indicator
output tab width (default = El)
GETVEC uefficiencs· (minimum = 3)

'(" f.~c; d"" on I '=1

" fast " T'f:r a(l (bl..lffi::~r-t~d)

~" r- i te
U fa~:.t II

1,..' r i te (()uffered)
r ec;:d/~~ T' i tE:'

/ / • (Jr'en U n:~ce i ve
// "directed" receive
/,/ t. rans; ITt i t.
/ ~/ t rc:nsc(·~ i '·.lE·~

// "transparent" t.ransmit
/1 "Quick" transmit
/ / · t e 1" IT! ina t e •
// "phantom open u receive
// ·phantom directed" receive

::.::,:,::::::,,::::::::-,;::,:,::::::::::::::

Extended libra~~ header

This appendix contains a cop~ of the extended librar~ header from
the file ·XLIBHDR.BC".

///////11/1//1/1//1//////111/////1111////1/111/1/1/11//
/1 //
/1 Finning BCPL S~stem: "Extended" Librar~ Header 1/
/1
// Programmer: D. D~ment, Finning Tractor
,l/
// Revision Date: 27/Jul~/77
//

/ / I ,

//
//
//
//

/1/1////////1//1/11//////1///////////1////////1///1////

GL.OBAL. ~; (XGLOB

// In the comments describing these global entries,
// the following abbreviations are used:
// S NEEDS ·8TRFUNC· (string functions)
// T - NEEDS "TIMFUNC· (time functions)
// D NEEDS "DBLFUNC" (double precision functions)
// fn - the global references a function
// rt the global references a routine

CDPYET/:< • 100 // c fn cOF··it~s a string • ~J

~;EAr<CHSTF: • 101 / I C fn s;e"i r·ches. !:>tring for slJbst Y' i r,sl • , / ~.

I NSEF:TCHi~P • 102 I I (". fr, inserts character in strin9j • / ,- ':::.

I N:3EF:TSTF:: • 1.03 • // e' ;:) fn inserts string :i.n string
EXTF:ACT:::nF: • 104 / , .. / S fn e>:t ract-::. stlf:.ls.tT'ing frolT, s.tr·inSl •
tiCANSTF: • :1. o~.=.; I I C fn s·car,·:::· i:lnd "::;p lit·:; • ,:;: stY'ing ,. i / '"'
1 . ..jf::ITIME • 109 ,/ /' T rt F-. r i ,.., t s; fo rfi,at ted t.ifi,E· and date •

D. M()'.) • ·1 10 /.t ,.
[I fn doublE:' 1'-,. rec i·:; i on ITI Cl· .. ·(~ • .I. I

II. {~DD • 11l ,/ .. / [I fn dCll.lbJ.€~ precision add · II.SUB • 1 12 l ' D fn doublE' r' pec i·:; i em But-,traet " .I. I' /

It.NEG .> 1 .! ? ;,l ,,/ D fr·, cioub 1 e preci=:.ion negatE;! .,
.... j '

D. f)Bt; • :l. 1 ,~ ,/ l It fn dDubJ.(~ F' r f.~ cis i eo r, a r..,s 0 1. ute ~/aJ.ue •

D ,. t1UL • 1.1.5 ..- ,/' D fn doub 1. €~ pT'E·ci~:.ion filultiF··l~ ., i

D.:01'.) · J. 1. .::. .l D fn douhle pr(~cis.ion dividE;~ · It. F;:EM · 1.1.7 /" ./ Ii fn d eo u i::d. €~ F··reeis;ion r·en'~l i nde r •
D ,. F<Ef~DN • un ...

,/' D ofn dour)l€'! pr~?cj.s:i.eon F.:Er:)[IN ., i

Ii ,L·.JF:ITED : :I. 1 .-.. . :" ,/ / D rt dDUC:o 1. E' PT'E·cis.ieon WfdTED

~:.) XGLOB

............................... _.. r:. i j"., n i r,:,'.i J:; CF'L. S .'"~ ':; t.E! IT, r;: c· r·,::.· r·f? nCi::! i'"i an'j a 1. _ .. -- -............. .

tl :1.0

::: ::. :;:: ~: ~ :::: ::.: ::::.:::: ;:::

BCPL run-time e~ror messaSes

The run-time s~stem will detect various errors under conditions
as described in this manual. There are 8 such· errors, and the~
all act as "BCPL run-timeD error returns (s~e section 7.22)~ ~s
such, the~ will be passed as arsuments to ABORT, :STOP,
POSTMORTEM, or USERDEBUG.

The association between error numbers and their meaninS is as
follc)ws:

Error ·it 1.
Error :fI:2
Errelr =8:3
ErrOl' :fI:4
Error i!:S
ErT'or :ft:t.
Error :ft:7
[1'1'01' :11:10

St,,)ck elverflow
UnassiSned slobal. or local variable
Unimplemented facilit~
Libl'ar~ error
Division overflow
Insufficient space for vector (or stack)
Debus packaSe not loaded
File use incompatible with ·OPEN" mode

When these errors are detected, the s~stem ret~rn5 to the
PT'evious execution level with return (error) code :fI:l0000+n.

--------.--- Finnin5 BCPL Ssstem Reference Manual -------~--

:::; ::::; :::: :;:; :::: :;:; :::. :::: :::::;:

• • • this appendix is not ~et available •

.... F' i nn.i. "'I~;; E: C F" L ~::; ':!':::. t E·:' 1'(1 F~ f:! f I~~ f'f:!f'IC 0: rij anl..la 3.

